
1

Programming Assignment 2:

Constant Propagation and Worklist Solver

Course “Static Program Analysis” @Nanjing University
Assignments Designed by Tian Tan and Yue Li

1 Assignment Objectives

• Implement a constant propagation for Java.
• Implement a generic worklist solver, which will be used to solve the data-flow

problem you defined, i.e., constant propagation.

In this programming assignment, you will implement the key parts of a constant
propagation and a worklist solver on top of Tai-e. We introduce a lot of information in
this document which is necessary for implementing a working constant propagation and
worklist solver. Please read the document thoroughly.

2 Implementing Constant Propagation

2.1 Scope

In this assignment, you need to implement the constant propagation for values of int
type. Note that in Java, actually the values of types boolean, byte, char, and short
are also represented and computed as int values during run time1, thus your analysis
would also be able to handle the values of these types. Other primitive types (long,
float, and double) and reference types (class types, array types, etc.) are out of scope,
and you should ignore the values of these types.

For statements, as shown in page 247 of slides for Lecture 6, you only need to focus on
assign statements whose left-hand side expressions are variables, and right-hand side
expressions are:

• Constants, e.g., x = 1
• Variables, e.g., x = y
• Binary expressions, e.g., x = a + b, and x = a >> b

Table 1 lists all binary operations (except logical) that you could perform on int values
in Java2, and you need to handle all these operators in your assignment.

1 https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-2.html#jvms-2.11.1-320
2 https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-2.html#jvms-2.11.1-320
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

2

Kinds Operators
Arithmetic + - * / %
Condition == != < > <= >=
Shift << >> >>>
Bitwise | & ^

Table 1. Binary operators for int in Java

For the assign statements (again, whose left-hand side expressions are variables) with
other right-hand side expressions, e.g., method calls (x = m(…)) or field loads (x =
o.f), you should give them conservative (maybe imprecise) approximations, e.g., x =
NAC. You will handle method calls and field loads more precisely in later assignments.

For the other statements that are not mentioned above (e.g., field store o.f = x which
will be handled after we learn alias analysis), the transfer function is identity function.

2.2 Tai-e Classes You Need to Know

In this section, we first introduce the IR-related classes (pascal.taie.ir.*) and
then the analysis-related classes (pascal.taie.analysis.*) you need to know for
implementing constant propagation.

 pascal.taie.ir.IR

This class is the central data structure of intermediate representation in Tai-e, and

How About Logical Operators?

We do not list logical operators, i.e., logical AND (&&) and OR (||) in above
table, because in Java, these two operators do not have corresponding
instructions in bytecode, and instead, they are implemented as branch
statements. For example, such statement
a = b || c;
will be transformed to following semantically equivalent statements:
if (b) {
 t = true; // t is temp variable
} else if (c) {
 t = true;
} else {
 t = false;
}
a = t;
As our constant propagation can handle assignments for constants (e.g., t =
true) and variables (e.g., a = t), and branch statements (e.g., if (b) {…}),
it can handle && and || automatically.

3

each IR instance contains the information for the body of a particular method, such
as variables, parameters, statements, etc. You can obtain this information through
its APIs, which are all commented in the source code.

 pascal.taie.ir.exp.Exp
You have seen this interface in Assignment 1. In this assignment, you will need to
handle more of its subclasses, as shown in this partial class hierarchy:

Now we introduce the classes in this figure.

 pascal.taie.ir.exp.Var
This class represents the variables in Tai-e’s IR.

 pascal.taie.ir.exp.IntLiteral
Following Java Language Specification3, we call constant values literals in Tai-e.
Each instance of this class represents an integer literal in the program, and you can
obtain the int value by calling its getValue() method.

 pascal.taie.ir.exp.BinaryExp

This class represents binary expressions in the program. It has several subclasses,
corresponding to different kinds of binary expressions as shown in Table 1, and
each subclass contains an inner enum type 4 which represents the operators
supported by the expression class. For example, ArithmeticExp.Op represents
the operators of ArithmeticExp (arithmetic expressions), i.e., +, -, *, /, and %.

Note that in Tai-e, both operands of BinaryExp are of type Var, e.g., statement
x = y + 6;

will be transformed to

%intconst0 = 6; // %intconst* are temp variables introduced
 x = y + %intconst0; // by Tai-e to hold constant int values

in Tai-e’s IR. Such design simplifies the implementation of analyses, as you only
need to consider one case (i.e., Var) for every operand of any BinaryExp.

3 https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.8.1
4 https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.8.1
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

4

 pascal.taie.ir.stmt.DefinitionStmt
This class is a subclass of Stmt, and it represents all definition statements5 in the
program, e.g., x = y or x = m(…) where x is defined. This class is very simple,
and you could read its source code and comments to decide how to use it.

 pascal.taie.analysis.dataflow.analysis.DataflowAnalysis
This is the interface of concrete data-flow analyses and will be used by the analysis
solver as you have seen in Assignment 1. In this assignment, you also only need to
focus on the first 5 APIs, which will be invoked by the worklist solver you write.

 pascal.taie.analysis.dataflow.analysis.constprop.Value
This class represents the lattice values in constant propagation, i.e., (the lattice
described in page 238 of slides for Lecture 6). Its code and comments are self-
explaining. You should use these static methods to obtain instances of this class:

 Value getNAC(): returns NAC

 Value getUndef(): returns UNDEF

 Value makeConstant(int): returns a constant for the given integer

 pascal.taie.analysis.dataflow.analysis.constprop.CPFact
This class represents the data facts in constant propagation, i.e., the mapping from
variables (Var) to their lattice values (Value). This class provides various map-
related operations, such as query/update key-value mappings, etc., and most of
them are inherited from pascal.taie.analysis.dataflow.fact.MapFact.
The APIs of both classes are commented in the source code, and you should read
the source code and decide which APIs to use in this assignment.

 pascal.taie.analysis.dataflow.analysis.constprop.ConstantPr
opagation
This class implements DataflowAnalysis and defines constant propagation. It
is incomplete, and you need to finish it as explained in Section 2.3.

2.3 Your Task [Important!]

Your first task is to implement the following APIs of ConstantPropagation:

 CPFact newBoundaryFact(CFG)
 CPFact newInitialFact()
 void meetInto(CPFact,CPFact)
 boolean transferNode(Stmt,CPFact,CPFact)

You have seen the above four APIs from Assignment 1, which are inherited from
DataflowAnalysis. Note that when implementing newBoundaryFact(), for each

5 In this assignment, we use two terms assign statement and definition statement interchangeably.

5

method being analyzed, you should handle the parameters of the method properly, i.e.,
initialize their values to NAC (Question for you: Why do we do this?).

 Hint: As mentioned in Section 2.1, we focus on constant propagation for values of

int type in this assignment. To achieve this, we provide an auxiliary method
canHoldInt(Var) in ConstantPropagation to judge if a variable can hold
values of int type, and you should use it to check if a parameter, and also other
variables, are in the scope of this assignment. You should ignore the variables that
are out of scope (e.g., float variables).

In addition, you need to implement these two auxiliary methods:

 Value meetValue(Value,Value)

This corresponds to the meet operator ⊓ defined in page 238 of slides for Lecture
6. You should invoke this method from meetInto().

 Value evaluate(Exp,CPFact)
This method evaluates the lattice value (Value) for a right-hand side expression
(Exp). You will need to handle three cases in this method as described in page 247
of slides for Lecture 6, and for other cases, it should return NAC (also described in
Section 2.1). You should invoke this method from transferNode().

 Hints: 1) As in Assignment 1, the design of meetInto() might be a bit different

from your expectation. To understand this design, please review relevant part in the
document for Assignment 1.
2) The evaluation results of condition expressions (e.g., a == b) should be
represented by 1 (for true) or 0 (for false).
3) For cases of division-by-zero (both / and %), you should treat its result as UNDEF,
e.g., for x = a / 0, x is UNDEF.

3 Implementing Worklist Solver

3.1 Tai-e Classes You Need to Know

Similar to iterative solver, to implement worklist solver on Tai-e, you need to know
DataflowResult, CFG, and Solver, which have been introduced in Assignment 1.
Besides, you need to know:

 pascal.taie.analysis.dataflow.solver.WorkListSolver

This class extends Solver and implements worklist algorithm. It is incomplete,
and to be finished.

6

3.2 Your Task [Important!]

Your second task is to finish two APIs of the solver classes mentioned above:

 Solver. initializeForward(CFG,DataflowResult)
 WorkListSolver. doSolveForward(CFG,DataflowResult)

You only need to focus on forward-related methods as constant propagation is a forward
analysis. In initializeForward(), you should implement the first three lines in the
algorithm in page 258 of slides for Lecture 6. You should implement the main part of
worklist algorithm in doSolveForward().

 Hints: 1) The worklist algorithm in the slides compares old_OUT and OUT[B] to

decide if the successors of a node need to be added to the worklist, which is not
very efficient. DataflowAnalysis.transferNode() returns whether the
transfer changes the OUT fact of the node on each call, and you could leverage this
feature to avoid comparing old_OUT and OUT[B].
2) Similar to iterative solver in Assignment 1, do not forget to initialize IN fact of
each Stmt in Solver.initializeForward() (the same initial fact as in OUT).

4 Run and Test Your Implementation

You can run the analysis as described in Tai-e Manual for Assignments. In this
assignment, Tai-e performs constant propagation for each method of input class, and
outputs the analysis results, i.e., the data-flow information (lattice values of variables)
in OUT fact of each Stmt:

The OUT facts are null as you have not finished the analysis yet. After you implement
the analysis, the output should be:

7

In addition, Tai-e outputs the control-flow graphs of the methods it analyzes to folder
output/. The CFGs are stored as .dot files, and can be visualized by Graphviz
(https://graphviz.org/download/).

We provide class pascal.taie.analysis.dataflow.analysis.constprop.CPTest
as the test driver for this assignment, and you could use it to test your implementation
as described in Tai-e Manual for Assignments.

5 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do NOT plagiarize. The work must be all your own!

6 Submission of Assignment

Your submission should be a zip file, which contains your implementation of
• ConstantPropagation.java
• Solver.java
• WorkListSolver.java

The naming convention your submission is: <STUDENT_ID>-<NAME>-A2.zip

Please submit your assignment to 教学立方.

7 Grading

The points will be allocated for correctness. We will use your submission to analyze the
given test files from the src/test/resources/ directory, as well as other tests of
our own, and compare your output to that of our solution.

Good luck!

https://graphviz.org/download/

	1 Assignment Objectives
	2 Implementing Constant Propagation
	2.1 Scope
	2.2 Tai-e Classes You Need to Know
	2.3 Your Task [Important!]

	3 Implementing Worklist Solver
	3.1 Tai-e Classes You Need to Know
	3.2 Your Task [Important!]

	4 Run and Test Your Implementation
	5 General Requirements
	6 Submission of Assignment
	7 Grading

