
1

Programming Assignment 4:

CHA and Interprocedural Constant Propagation
Course “Static Program Analysis” @Nanjing University

Assignments Designed by Tian Tan and Yue Li

1 Assignment Objectives

• Implement a class hierarchy analysis (CHA) for Java.
• Implement an interprocedural constant propagation.
• Implement a worklist solver for interprocedural data-flow analysis.

In this programming assignment, you will implement a CHA-based call graph builder
for Java on top of Tai-e. To demonstrate the usefulness of call graph, you will complete
an interprocedural constant propagation, which uses the call graph constructed by your
analysis. To make interprocedural constant propagation work, you also need to
implement a worklist solver that supports interprocedural data-flow analysis (In the
lecture, we did not teach you how to implement interprocedural analysis in detail. Don’t
worry, you will learn it from this assignment).

The scope of this assignment is the same as in Assignment 2, i.e., you still only need to
focus on constant propagation for int values, and the only difference is that you will
handle method calls more precisely in this assignment. If your implementation is correct,
you can observe that interprocedural constant propagation achieves better precision
than intraprocedural counterpart which treats method calls conservatively.

2 Implementing Class Hierarchy Analysis

In this assignment, you will deal with four kinds of method invocations in Java, i.e.,
invokestatic, invokespecial, invokeinterface, and invokevirtual as
explained in Lecture 7. Note that since Java 8, interfaces can also declare non-abstract
methods (default methods 1) and since Java 11, invokeinterface and invoke-
virtual can call private methods. These new changes complicate the call graph
construction. For simplicity, you are not required to handle them in this assignment.

2.1 Tai-e Classes You Need to Know

Some classes used in this assignment have many APIs, thus, to save your effort, we will
introduce the APIs of these classes that you may use. Below we present the classes in a

1 https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

2

top-down manner, i.e., we first introduce the key class of call graph construction
(DefaultCallGraph), and then the other classes it depends on.

 pascal.taie.analysis.graph.callgraph.DefaultCallGraph

This class represents call graph of the program. It provides various APIs (inherited
from class AbstractCallGraph) to obtain the information of the call graph, and
the APIs to modify the call graph, which you may use to build the call graph.

 Stream<Invoke> callSitesIn(JMethod): returns all call sites in the
given method.

 boolean contains(JMethod): returns whether the call graph contains the
given method, i.e., the method is reachable in this call graph.

 boolean addReachableMethod(JMethod): adds a method to this call
graph. After this call, the method becomes reachable in the call graph.

 boolean addEdge(Edge<Invoke,JMethod>): adds a call edge to this
call graph.

 pascal.taie.analysis.graph.callgraph.CallKind

This enumeration type represents the kinds of call graph edges. It defines several
constants including INTERFACE, VIRTUAL, SPECIAL and STATIC, corresponding
to four kinds of invocations in Java we introduced in Lecture 7.

 pascal.taie.analysis.graph.callgraph.Edge<Invoke,JMethod>

This class represents call graph edges. Each edge connects a call site (of type
Invoke) to a callee method (of type JMethod). To construct an Edge, you need
to provide the CallKind, a call site and a callee method to its constructor.

 pascal.taie.ir.stmt.Invoke (subclass of Stmt)

This class represents method calls, e.g., x = o.m(a1,a2,…), in the program, and
also the call sites in the call graph. It provides APIs to obtain various information
of the call site. Specifically, you will use getMethodRef() to obtain signature
information of the target methods.

 pascal.taie.ir.proginfo.MethodRef
Tai-e’s representation to a reference to target method(s) as it appears in a call site.
It contains the signature information of the target methods of the call site.

 JClass getDeclaringClass(): returns the declaring class of the method
signature (corresponding to class type in page 24 of Lecture 7).

 Subsignature getSubsignature(): returns the subsignature of the
callee method(s). We will introduce class Subsignature later.

For MethodRef, you should only use the above two APIs in this assignment.

3

 pascal.taie.language.classes.JMethod
Tai-e’s representation of Java methods. Each instance of JMethod corresponds to
a method in the program and contains various information about the method.

 boolean isAbstract(): if this JMethod is an abstract method that has no
method body, then it returns true; otherwise, it returns false.

 pascal.taie.language.classes.JClass

Tai-e’s representation of Java classes. Each instance of JClass corresponds to a
class in the program and contains various information about the class.

 JClass getSuperClass(): returns the superclass of this class. If this class
is the top of class hierarchy, i.e., java.lang.Object, null is returned.

 JMethod getDeclaredMethod(Subsignature): returns the method
declared in this class with the given subsignature. If no method with the given
subsignature can be found, null is returned.

 boolean isInterface(): returns whether this class is an interface.

 pascal.taie.language.classes.Subsignature

Tai-e’s representation of subsignature. The subsignature of a method only contains
the method name and the descriptor of a method signature as introduced in page 24
of Lecture 7. For example, the subsignature of the following method foo is
“T foo(P,Q,R)” while its signature is “<C: T foo(P,Q,R)>”.
class C {

T foo(P p, Q q, R r) { … }
}

 pascal.taie.language.classes.ClassHierarchy
This class provides class hierarchy information.

 Collection<JClass> getDirectSubclassesOf(JClass): for a given
class, returns the classes that directly extend the class.

 Collection<JClass> getDirectSubinterfacesOf(JClass): for a
given interface, returns the interfaces that directly extend the interface.

 Collection<JClass> getDirectImplementorsOf(JClass): for a
given interface, returns the classes that directly implement the interface.

For example, in this class hierarchy, I, II, and III are interfaces, and the others
are classes:

4

Then we have:
• getDirectSubclassesOf(A) = [B]
• getDirectSubinterfacesOf(I) = [II, III]
• getDirectImplementorsOf(II) = [E]

 pascal.taie.analysis.graph.callgraph.CHABuilder

This class builds call graph via class hierarchy analysis. It is incomplete, and you
need to finish it as explained in Section 2.2.

2.2 Your Task [Important!]

Your first task is to finish class CHABuilder. Specifically, you will finish three APIs:

 JMethod dispatch(JClass,Subsignature)

This method implements the Dispatch function given in page 26 of the slides
for Lecture 7. If no satisfying method is found, returns null.

 Set<JMethod> resolve(Invoke)

This method implements the Resolve function given in page 33 of the slides
for Lecture 7.

 Hint: you could use method CallGraphs.getCallKind(Invoke) to
obtain the call kind of a call site.

 CallGraph<Invoke, JMethod> buildCallGraph(JMethod)

This method implements the BuildCallGraph algorithm given in page 52 of
the slides for Lecture 7.

We have provided code skeletons for the above three APIs, and your task is to fill in the
part with comment “TODO – finish me”.

3 Implementing Interprocedural Constant Propagation

3.1 Edge Transfer

Interprocedural constant propagation is very similar to its intraprocedural counterpart.
The main difference between them is that interprocedural constant propagation employs
edge transfer to handle interprocedural data flows formed by method calls and returns
more precisely.

In classic intraprocedural data-flow analysis, take forward analysis as example, the IN
fact of a node is computed by directly meeting the OUT facts of all its predecessors:

IN[B] = UP a predecessor of B OUT[P]

However, in interprocedural data-flow analysis, for a node, we need to first apply an

5

edge transfer to OUT facts of its predecessors, and then meet the results into its IN fact.
For example, in this ICFG fragment discussed in Lecture 7:

Figure 1. An example of edge transfer.

To compute the IN fact of statement 4, i.e., entry node of method addOne(), we need to
apply edge transfer for edge 2→4 to convert the OUT fact of statement 2 (a=6) to x=6,
and finally meet x=6 into IN fact of statement 4.

To support edge transfer, we define function transferEdge(edge, fact), which takes an
edge (edge) on the ICFG and the OUT fact (fact) of source node of the edge as inputs,
and outputs the resulting fact. Accordingly, the equation for computing IN facts now
changes to

IN[B] = UP a predecessor of B transferEdge (P→B, OUT[P])

As we have introduced in Lecture 7, in interprocedural constant propagation, you need
to define edge transfer functions for four kinds of ICFG edges, as described below:

• Normal edge: the edge transfer function is an identity function, i.e.
transferEdge(edge, fact) = fact.

• Call-to-return edge: for invocation x = m(…), the edge transfer function kills
the value of LHS variable, i.e., x, and propagates the values of other variables
along the edge. For invocation without LHS variable, e.g., m(…), the edge
transfer function is equivalent to an identity function.

• Call edge: the edge transfer function passes the values of arguments at a call
site to the parameters of its callee(s). Concretely, it obtains the argument values
from the OUT fact of the call site, and outputs a fact containing the mapping
from parameters of the callee to corresponding values. For example, in Figure
1, transferEdge(2→4, {a=6}) = {x=6}. The result of the transfer function
should only contain the values for parameters of the callee (e.g., x of addOne()
in Figure 1).

• Return edge: the edge transfer function passes the return values of a callee to
the LHS variable of the call site. Concretely, it obtains the returned values from

6

the OUT fact of the method exit, and outputs a fact containing the mapping from
LHS variable of the call site to corresponding value. For example, in Figure 1,
transferEdge(6→3, {x=6,y=7}) = {b=7}. The result of the edge transfer
function should only contain the value for LHS variable of the call site (e.g., b
at statement 3 in Figure 1). If the call site does not have LHS variable, then the
transfer function just returns an empty fact.

We will introduce more information about how to implement these edge transfer
functions on Tai-e in the following sections.

3.2 Tai-e Classes You Need to Know

 pascal.taie.analysis.graph.icfg.ICFGEdge
This abstract class represents edges in ICFG. It has four subclasses, corresponding
to four kinds of ICFG edges:

• pascal.taie.analysis.graph.icfg.NormalEdge
• pascal.taie.analysis.graph.icfg.CallToReturnEdge
• pascal.taie.analysis.graph.icfg.CallEdge
• pascal.taie.analysis.graph.icfg.ReturnEdge

These classes are simple and commented, and you should read the source code to
decide how to use them.

 pascal.taie.analysis.dataflow.inter.InterDataflowAnalysis
This is the interface of concrete interprocedural data-flow analyses. It has 6 APIs.
The first 5 APIs are the same as the ones in DataflowAnalysis, which you have
seen in previous assignments, and the last API, transferEdge(), corresponds to
the edge transfer function we introduce in Section 3.1. These APIs will be invoked
by the interprocedural data-flow analysis solver you will write in this assignment.

 pascal.taie.analysis.dataflow.inter.AbstractInterDataflowAn
alysis
This abstract class implements InterDataflowAnalysis and provides common
functionalities for implementations of InterDataflowAnalysis. Specifically,
it dispatches different kinds of ICFG nodes/edges to the specific transfer functions,
so that the analysis implementations can directly focus on the specific nodes/edges.

 pascal.taie.analysis.dataflow.inter.InterConstantPropagation
This class extends AbstractInterDataflowAnalysis and defines inter-
procedural constant propagation. It is incomplete, and you need to finish it as
explained in Section 3.3.

 pascal.taie.ir.exp.InvokeExp
This class represents invocation expressions in the program. It contains the method
reference and arguments of each invocation, and you should read the source code
and the comments to decide how to use it.

7

3.3 Your Task [Important!]

Your second task is to finish the following APIs of InterConstantPropagation:

 boolean transferCallNode(Stmt,CPFact,CPFact)
 boolean transferNonCallNode(Stmt,CPFact,CPFact)
 CPFact transferNormalEdge(NormalEdge,CPFact)
 CPFact transferCallToReturnEdge(CallToReturnEdge,CPFact)
 CPFact transferCallEdge(LocalEdge,CPFact)
 CPFact transferReturnEdge(LocalEdge,CPFact)

This class leverages the logic of intraprocedural constant propagation (it holds an object
of ConstantPropagation in its field cp). Thus, to make this class work, you need
to finish ConstantPropagation.java. You could copy your implementation from
previous assignments. Note that you don’t need to submit ConstantPropagation in
this assignment, so that even though your implementation of previous assignments is
not entirely correct, it does not affect your score of this assignment.

 Hints: 1) When you implement the transfer*Edge() methods, you should not

modify the second parameter, i.e., OUT fact of the source node of the edge.
2) As introduced in Assignment 2, you could obtain method parameters from class
IR. To obtain the IR of a method, you could use API JMethod.getIR().

4 Implementing Interprocedural Worklist Solver

4.1 Algorithm

The algorithm of interprocedural worklist solver is almost the same as intraprocedural
worklist solver that you have implemented in Assignment 2. There are only two
differences between them:

1. As explained in Section 3.1, when computing IN fact of a node, interprocedural
solver needs to apply edge transfer function (transferEdge) to its incoming
edges and the OUT facts of the predecessors.

2. During initialization, interprocedural solver needs to initialize the IN/OUT facts
of all nodes in the program (i.e., all nodes in the ICFG). It should set boundary
fact to only the entry nodes of the entry methods of the ICFG (e.g., the main
method). The initial facts of entry nodes of other methods are the same as non-
entry nodes.

4.2 Tai-e Classes You Need to Know

 pascal.taie.analysis.dataflow.fact.DataflowResult
You have seen this class in previous assignments. In this assignment, you will use

8

a DataflowResult object to manages the facts of all nodes in the ICFG. You
could get/set IN/OUT facts of nodes in the ICFG through the APIs of this class.

 pascal.taie.analysis.graph.icfg.ICFG
This class represents interprocedural control-flow graph of the program. Similar to
CFG, it is also iterable, thus you could iterate all nodes of an ICFG via a for loop:

ICFG icfg = ...;
 for (Node node : icfg) {
 ...

}

For more information about ICFG, please read its code and comments.

 pascal.taie.analysis.dataflow.inter.InterSolver
This class is the solver for interprocedural data-flow analysis. It is incomplete, and
you need to finish it as explained in Section 4.3.

4.3 Your Task [Important!]

Your final task is to finish two APIs of InterSolver:

 void initialize()
 void doSolve()

Still, you only need to implement a solver for forward analysis as interprocedural
constant propagation is forward. You should initialize the IN/OUT facts of ICFG nodes
in initialize(), and implement the main part of worklist algorithm in doSolve().

Hint: we have setup the analysis to be solved, the ICFG of the program, and the
DataflowResult object for managing the facts, and stored them in fields analysis,
icfg, and result of InterSolver, so that you could easily access and manipulate
these objects.

5 Run and Test Your Implementation

You can run the analyses as described in Tai-e Manual for Assignments. In this
assignment, Tai-e first performs CHA to build a call graph for the program, then
constructs ICFG based on the call graph, and finally runs interprocedural constant
propagation on the ICFG. To help debugging, it outputs the results of both CHA and
interprocedural constant propagation:

9

The above example has been introduced in Lecture 7. The call graph is empty (0
reachable method) and OUT facts are null as you have not finished the analyses yet.
After you implement the analyses, the output should be:

In addition, Tai-e outputs the ICFG of the program it analyzes to folder output/. The
ICFGs are stored as .dot files which can be visualized by Graphviz. Note that each
ICFG depends on a call graph, thus if you modify CHABuilder, Tai-e may output
different ICFGs for the same program.

10

We provide classes pascal.taie.analysis.graph.callgraph.cha.CHATest
and pascal.taie.analysis.dataflow.analysis.constprop.InterCPTest
as the test drivers for CHA and interprocedural constant propagation, and you could use
them to test your implementation as described in Tai-e Manual for Assignments.

We encourage you to use your implementation of Assignment 2, i.e., intraprocedural
constant propagation, to analyze the test cases in this assignment, and observe the
precision differences between intra- and inter-procedural analyses.

From this assignment, the analyses you implement are interprocedural analyses, which
analyze a program from its entry method, i.e., the main method. Hence, if you want to
write a test case for your implementation, please make sure that the input class contains
a public static void main(String[]) method.

6 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do NOT plagiarize. The work must be all your own!

7 Submission of Assignment

Your submission should be a zip file, which contains your implementation of

• CHABuilder.java
• InterConstantPropagation.java
• InterSolver.java

The naming convention your submission is: <STUDENT_ID>-<NAME>-A4.zip
Please submit your assignment to 教学立方.

8 Grading

The points will be allocated for correctness. We will use your submission to analyze the
given test files from the src/test/resources/ directory, as well as other tests of
our own, and compare your output to that of our solution.

Good luck!

	1 Assignment Objectives
	2 Implementing Class Hierarchy Analysis
	2.1 Tai-e Classes You Need to Know
	2.2 Your Task [Important!]

	3 Implementing Interprocedural Constant Propagation
	3.1 Edge Transfer
	3.2 Tai-e Classes You Need to Know
	3.3 Your Task [Important!]

	4 Implementing Interprocedural Worklist Solver
	4.1 Algorithm
	4.2 Tai-e Classes You Need to Know
	4.3 Your Task [Important!]

	5 Run and Test Your Implementation
	6 General Requirements
	7 Submission of Assignment
	8 Grading

