
1

Programming Assignment 6:

Context-Sensitive Pointer Analysis
Course “Static Program Analysis” @Nanjing University

Assignments Designed by Tian Tan and Yue Li

1 Assignment Objectives

• Implement a context-sensitive pointer analysis framework for Java.
• Implement on-the-fly call graph construction as part of pointer analysis.
• Implement common context sensitivity variants.

In this programming assignment, you will implement a context-sensitive pointer
analysis framework for Java on top of Tai-e. The pointer analysis builds a call graph on
the fly. To make the framework work, you also need to implement concrete context
sensitivity variants. If your implementation is correct, you can observe that context-
sensitive pointer analysis can build more precise call graphs than context-insensitive
pointer analysis (CIPTA), and different context sensitivity variants would exhibit
different precision as described later.

Similar to the previous assignment, in this assignment, we will teach you how to handle
the Java features that are not covered in the lectures, i.e., static field, array, and static
method, in a context-sensitive setting, so that you will implement a context-sensitive
pointer analysis that can handle all kinds of pointers in Java.

2 Implementing Context-Sensitive Pointer Analysis

2.1 Scope

You will implement the context-sensitive pointer analysis algorithm introduced in
Lectures 11 and 12, and the algorithm handles two kinds of pointers, i.e., local variables
and instance fields, as well as instance method calls. To achieve a more practical pointer
analysis, you need to handle the other two kinds of pointers, i.e., static fields and array
indexes, as well as static method calls in this assignment. We will introduce the analysis
rules to handle these features in Section 2.2. These rules are very similar to (or even
simpler than) the rules you have learnt in the lectures, and you need to figure out how
to implement them based on the pointer analysis algorithm.

2.2 New Rules

In this section, we introduce new context-sensitive pointer analysis rules to handle static
fields, array indexes, and static method calls.

2

Static Fields. The handling of static fields is simple, i.e., we just need to pass values
between the static field and the variable (with a context). We use 𝑇𝑇.𝑓𝑓 to denote the
pointer for static field T.f, and then define the rules to handle static field stores and
loads as follows:

Kind Statement Rule (under context 𝒄𝒄) PFG Edge

Static
Store

T.f = y
𝑐𝑐′: 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐:𝑦𝑦)
𝑐𝑐′: 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑇𝑇.𝑓𝑓)

 𝑇𝑇.𝑓𝑓 ← 𝑐𝑐:𝑦𝑦

Static
Load

y = T.f
𝑐𝑐′: 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑇𝑇.𝑓𝑓)
𝑐𝑐′: 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐:𝑦𝑦)

 𝑐𝑐: 𝑦𝑦 ← 𝑇𝑇.𝑓𝑓

Array Indexes. As explained in Lecture 8, regular pointer analysis does not distinguish
between loads and stores to different array indexes (locations). Suppose that 𝑐𝑐′:𝑜𝑜𝑖𝑖
represents an array object (with a heap context 𝑐𝑐′), then we use 𝑐𝑐′:𝑜𝑜𝑖𝑖[∗] to denote the
pointer which points to all elements that are stored in any indexes of the array. Based
on such treatment, we define the rules to handle array stores and loads as follows:

Kind Statement Rule (under context 𝒄𝒄) PFG Edge

Array
Store

x[i] = y
𝑐𝑐′:𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑥𝑥), 𝑐𝑐′′: 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐:𝑦𝑦)

𝑐𝑐′′:𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐′: 𝑜𝑜𝑖𝑖[∗])
 𝑐𝑐′: 𝑜𝑜𝑖𝑖[∗] ← 𝑐𝑐: 𝑦𝑦

Array
Load

y = x[i]
𝑐𝑐′:𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑥𝑥), 𝑐𝑐′′: 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐′:𝑜𝑜𝑖𝑖[∗])

𝑐𝑐′′:𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑦𝑦)
 𝑐𝑐: 𝑦𝑦 ← 𝑐𝑐′: 𝑜𝑜𝑖𝑖[∗]

Static Methods. In context-sensitive pointer analysis, the handing of static methods is
also the same as that of instance methods, except that 1) we do not need to dispatch on
the receiver object to resolve the callee, and 2) we do not need to pass the receiver
object. Since static method calls do not require receiver object, its treatment is simpler
than that of instance method calls as shown below:

Kind Statement Rule (under context 𝒄𝒄) PFG Edge

Static
Call

l: r = T.m(a1,…,an)

𝑐𝑐𝑡𝑡 = Select(𝑐𝑐, 𝑙𝑙)
𝑐𝑐′: 𝑜𝑜𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐:𝑎𝑎𝑎𝑎), 1 ≤ 𝑎𝑎 ≤ 𝑛𝑛

𝑐𝑐′′:𝑜𝑜𝑣𝑣 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐𝑡𝑡:𝑚𝑚𝑟𝑟𝑟𝑟𝑡𝑡)
𝑐𝑐′: 𝑜𝑜𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝�𝑐𝑐𝑡𝑡:𝑚𝑚𝑝𝑝𝑗𝑗�, 1 ≤ 𝑎𝑎 ≤ 𝑛𝑛

𝑐𝑐′′:𝑜𝑜𝑣𝑣 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑟𝑟)

𝑐𝑐: 𝑎𝑎1 → 𝑐𝑐𝑡𝑡:𝑚𝑚𝑝𝑝1
…

𝑐𝑐: 𝑎𝑎𝑛𝑛 → 𝑐𝑐𝑡𝑡:𝑚𝑚𝑝𝑝𝑝𝑝
𝑐𝑐: 𝑟𝑟 ← 𝑐𝑐𝑡𝑡:𝑚𝑚𝑟𝑟𝑟𝑟𝑡𝑡

2.3 Tai-e Classes You Need to Know

In this assignment, you will use some classes that were introduced in the previous
assignment. Specifically, to implement context-sensitive pointer analysis, you need to
use the same IR classes as the previous assignment, i.e., IR, Var, InvokeExp, and

3

these subclasses of DefinitionStmt:

Besides, JMethod, JField, Obj, and HeapModel will also be used in this assignment.

Below we introduce the classes that are specific to this assignment, i.e., context-
sensitive pointer analysis. These classes are generally simple, and most of them are very
similar to the corresponding classes you have used in the previous assignment, except
that they bring context information. You should read their source code and comments
to decide how to use them.

 pascal.taie.analysis.pta.core.cs.context.Context

This class represents contexts in context-sensitive pointer analysis.

 pascal.taie.analysis.pta.core.cs.element.CSElement
This class represents context-sensitive elements in pointer analysis. Each element
is associated with a context. It has four subclasses, representing four kinds of
context-sensitive elements, as shown below:

 CSVar: represents a variable (Var) with a context (Context).
 CSObj: represents an abstract object (Obj) with a context (Context).
 CSCallSite: represents a call site (Invoke) with a context (Context).
 CSMethod: represents a method (JMethod) with a context (Context).

 pascal.taie.analysis.pta.core.cs.element.Pointer

This class represents the pointers in context-sensitive pointer analysis, i.e., the
nodes in the PFG (pointer flow graph). Similar to *.ci.Pointer (used in the
previous assignment), each Pointer is associated with a PointsToSet, which
can be obtained by calling getPointsToSet(). This class also has four
subclasses:

4

which corresponds to the four kinds of pointers (in a context-sensitive setting) in
Java as introduced in page 82 of slides for Lecture 8.

 pascal.taie.analysis.pta.core.cs.element.CSManager
This class manages all context-sensitive elements and all context-sensitive pointers,
i.e., you should obtain the instances of all subclasses of CSElement and Pointer
via APIs of this class.

 pascal.taie.analysis.pta.core.cs.selector.ContextSelector
This class is the interface between context-sensitive pointer analysis framework
and concrete context sensitivity variants (e.g., call-site sensitivity and object
sensitivity). It has 4 APIs, and one of them returns an empty context and the others
select contexts for static methods, instance methods, and heap objects, respectively.
In this assignment, all contexts in context-sensitive pointer analysis should be
produced by this class. You will implement several subclasses of this class as
explained in Section 3.

 pascal.taie.analysis.pta.core.cs.CSCallGraph
This class represents context-sensitive call graphs. It is very similar to class
DefaultCallGraph that you have used in previous assignments, except that the
call sites and methods are represented by CSCallSite and CSMethod. You will
use its APIs addReachableMethod(CSMethod) and addEdge(Edge) to
modify the call graph.

 pascal.taie.analysis.pta.pts.PointsToSet
This class represents points-to sets, i.e., sets of CSObj in context-sensitive pointer
analysis. It is iterable, i.e., you could iterate the objects in a points-to set via a for
loop:

PointsToSet pts = ...;
for (CSObj obj : pts) {

...
}

 pascal.taie.analysis.pta.pts.PointsToSetFactory
This class provides static factory methods for PointsToSet. You can use its two
versions of make() methods to create instances of PointsToSet.

5

 pascal.taie.analysis.pta.cs.PointerFlowGraph
This class represents a pointer flow graph of the program.

 pascal.taie.analysis.pta.cs.WorkList
This class represents the worklist in the pointer analysis algorithm.

 pascal.taie.analysis.pta.cs.Solver
This class implements a context-sensitive pointer analysis solver. It is incomplete,
and you need to finish it as explained in Section 2.4.

2.4 Your Task [Important!]

Your first task is to finish the core of context-sensitive pointer analysis framework, i.e.,
class Solver. We have setup heap model and context selector in Solver’s constructor,
and initialized context sensitivity (C.S.) manager, work list, pointer flow graph, and call
graph in Solver.initialize(), and stored them in Solver’s fields, so that you can
directly use them. You need to finish the same five APIs as the previous assignment:

 void addReachable(CSMethod)

This method implements the AddReachable function given in page 88 of the
slides for Lecture 12.

Hints: 1) Same as the previous assignment, do not forget to handle static field
stores/loads and static method calls in this method, and we also provide
method Solver.resolveCallee(CSObj,Invoke) to resolve callees of
various kinds of invocations in Java.

2) In this assignment, you can also handle different kinds of statements in
addReachable() via visitor pattern1. In context-sensitive pointer analysis,
the visit(…) methods of concrete visitor, i.e., inner class StmtProcessor,
need to access the CSMethod and Context being processed, and thus we add
a constructor to StmtProcessor which accepts a CSMethod as parameter.
In addReachable(), you need to create an instance of StmtProcessor for
each reachable CSMethod and use it to process its statements.

If you are not familiar with visitor pattern, it is totally fine to implement
addReachable() in your way.

 void addPFGEdge(Pointer,Pointer)

This method implements the AddEdge function given in page 94 of the slides
for Lecture 12.

 void analyze()

This method implements the main part, i.e., the while loop, of the Solve
function given in page 88 of the slides for Lecture 12.

1 https://refactoring.guru/design-patterns/visitor

https://refactoring.guru/design-patterns/visitor

6

Hint: You should handle array stores/loads in this method.

 PointsToSet propagate(Pointer,PointsToSet)

Same as the previous assignment, this method merges two steps of the
algorithm. It first computes the difference set (Δ = pts – pt(n)), then
propagates pts into pt(p) as described by the Propagate function in page 94 of
the slides for Lecture 12. It returns Δ as the result of the call.

 void processCall(CSVar,CSObj)

This method implements the ProcessCall function given in page 88 of the
slides for Lecture 12. The hints for implementation of this method are the
same as in the previous assignment.

We have provided code skeletons for the above APIs, and your task is to fill in the part
with comment “TODO – finish me”.

3 Implementing Common Context Sensitivity Variants

3.1 Scope

In this assignment, you will implement three common context sensitivity variants that
you have learnt in Lecture 12, i.e., call-site, object and type sensitivity. For each variant,
you need to finish two selectors with context limits being 1 and 2, respectively, (i.e., k-
limiting context abstraction with k=1 and k=2).

3.2 Tai-e Classes You Need to Know

 pascal.taie.analysis.pta.core.cs.selector.ContextSelector
This class represents context sensitivity variants as we have introduced in Section
2.3. This assignment involves seven subclasses of ContextSelector:

CISelector, which implements context insensitivity, is complete and the other
six selectors (the ones in red boxes) are not. You need to finish the six context
selectors in this assignment, as explained in Section 3.3.

7

 pascal.taie.analysis.pta.core.cs.context.ListContext
This class implements interface Context. It represents each context as a list of
context elements. It provides several static factory methods, i.e., make(…) methods,
to create contexts, and you will use them when implementing the context selectors.

3.3 Your Task [Important!]

Your second task is to implement three common context sensitivity variants by finishing
three APIs, i.e., two selectContext(…) and one selectHeapContext(…), of the
six context selectors2. For each k-limiting context selector, the limit of the heap contexts
is k-1, e.g., for 1-call-site sensitivity, the limit of heap context is 0 (essentially no heap
context), and for 2-call-site sensitivity, the limit of heap context is 1.

To select method contexts, you need to implement

• Context selectContext(CSCallSite,JMethod)
• Context selectContext(CSCallSite,CSObj,JMethod)

of each selector, and to select heap contexts, you need to implement

• Context selectHeapContext(CSMethod,Obj)

Below we list the six context selectors you need to finish.
 pascal.taie.analysis.pta.core.cs.selector._1CallSelector

This class implements 1-call-site sensitivity

 pascal.taie.analysis.pta.core.cs.selector._1ObjSelector
This class implements 1-object sensitivity

 pascal.taie.analysis.pta.core.cs.selector._1TypeSelector
This class implements 1-type sensitivity

 pascal.taie.analysis.pta.core.cs.selector._2CallSelector
This class implements 2-call-site sensitivity

 pascal.taie.analysis.pta.core.cs.selector._2ObjSelector
This class implements 2-object sensitivity

 pascal.taie.analysis.pta.core.cs.selector._2TypeSelector
This class implements 2-type sensitivity

 Hints: 1) For how to implement call-site, object and type sensitivity, please refer to
pages 103, 144, and 171 of the slides of Lecture 12.

2) In call-site sensitivity, the context selection for static methods is the same as

2 Note that we design in this way for simplicity of the assignment. Actually, Tai-e provides configurable
context selectors in terms of context limit k, for different context-sensitivity variants.

8

instance methods, i.e., at a static call, we add the call site to the caller context to
compose the callee context. In object and type sensitivity, the convention of
handling static methods is to directly use the caller context as the context of the
callee (namely, the target method of the static call). You should select contexts for
static methods as described above.

3) The last parameter of selectContext(…) and selectHeapContext(…) is
not used in this assignment.

We have provided code skeletons for the above classes, and your task is to fill in the
part with comment “TODO – finish me”.

4 Run and Test Your Implementation

You can run the analysis as described in Tai-e Manual for Assignments. In this
assignment, Tai-e performs context-sensitive pointer analysis for the program, and
outputs the points-to sets of all kinds of pointers and the resulting call graph:

The points-to sets and call graph are empty as you have not finished the analysis yet.
After you implement the analysis, the output should be:

9

Note that above is the result of context-insensitivity. You can configure Tai-e to analyze
the input program using other variants you implement. You just need to edit line 3 of
plan.yml in tai-e/ directory, i.e., cs: ci, and change ci to other variants below:

• ci: context insensitivity (complete and ready to use)
• 1-call: 1-call-site sensitivity
• 1-obj: 1-object sensitivity
• 1-type: 1-type sensitivity
• 2-call: 2-call sensitivity
• 2-obj: 2-object sensitivity
• 2-type: 2-type sensitivity

10

For example, if you set cs: 1-obj, then the output should be

The […] before each variable and object represent its context.

In addition, Tai-e outputs the IRs for the classes of the program it analyzes to folder
output/. The IRs are stored as .tir files which can be opened by general text editors.

We provide test driver pascal.taie.analysis.pta.CSPTATest for this assignment,
and you could use it to test your implementation.

We encourage you to use different context sensitivity variants to analyze the test cases
in this assignment (e.g., OneObject.java), and observe precision differences of the
resulting points-to sets and call graphs computed by different context-sensitive pointer
analyses.

11

5 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do NOT plagiarize. The work must be all your own!

6 Submission of Assignment

Your submission should be a zip file, which contains your implementation of
• Solver.java
• _1CallSelector.java
• _1ObjSelector.java
• _1TypeSelector.java
• _2CallSelector.java
• _2ObjSelector.java
• _2TypeSelector.java
The naming convention your submission is: <STUDENT_ID>-<NAME>-A6.zip
Please submit your assignment to 教学立方.

7 Grading

The points will be allocated for correctness. We will use your submission to analyze the
given test files from the src/test/resources/ directory, as well as other tests of
our own, and compare your output to that of our solution.

Good luck!

	1 Assignment Objectives
	2 Implementing Context-Sensitive Pointer Analysis
	2.1 Scope
	2.2 New Rules
	2.3 Tai-e Classes You Need to Know
	2.4 Your Task [Important!]

	3 Implementing Common Context Sensitivity Variants
	3.1 Scope
	3.2 Tai-e Classes You Need to Know
	3.3 Your Task [Important!]

	4 Run and Test Your Implementation
	5 General Requirements
	6 Submission of Assignment
	7 Grading

