
1

Programming Assignment 8: Taint Analysis
Course “Static Program Analysis” @Nanjing University

Assignments Designed by Tian Tan and Yue Li

1 Assignment Objectives

• Implement a taint analysis for Java.

Welcome to the last programming assignment of this course! ヾ(o◕∀◕)ﾉ

In this assignment, you will implement a taint analysis for Java based on the context-
sensitive pointer analysis (that you implemented in Assignment 6). In addition, we will
teach you a technique, called taint transfer, to detect more security vulnerabilities in
practice. We have provided a configurable taint analysis framework in Tai-e so that you
can conveniently configure sources, sinks, and how taint can be transferred in the
program.

Similar to Assignment 7, this assignment is also open. You need to figure out how taint
analysis interacts with pointer analysis and how to implement taint transfers by yourself.

2 Implementing Taint Analysis

2.1 Scope

In this section, we define the taint analysis that you need to implement in this
assignment. Same as the taint analysis introduced in Lecture 13, in this assignment, we
consider calls to the specific methods (typically data source APIs) as taint sources,
which return tainted data (also called taint objects in the analysis); and certain
arguments of specific methods are treated as taint sinks. For better precision, you will
implement a context-sensitive taint analysis following the rules below to handle sources
and sinks (modified based on the rules given in page 76 of slides for Lecture 13):

Kind Statement Rule (under context 𝑐𝑐)

Call (source) l: r = x.k(a1,…,an)
𝑐𝑐: 𝑙𝑙 → 𝑐𝑐𝑡𝑡:𝑚𝑚 ∈ 𝐶𝐶𝐶𝐶
⟨𝑚𝑚,𝑢𝑢⟩ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
[]: 𝑡𝑡𝑙𝑙𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑟𝑟)

Call (sink) l: r = x.k(a1,…,an)

𝑐𝑐: 𝑙𝑙 → 𝑐𝑐𝑡𝑡:𝑚𝑚 ∈ 𝐶𝐶𝐶𝐶
⟨𝑚𝑚, 𝑖𝑖⟩ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

[]: 𝑡𝑡𝑗𝑗𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑎𝑎𝑎𝑎)
⟨𝑗𝑗, 𝑙𝑙, 𝑖𝑖⟩ ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

2

Here, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is a set of pairs, denoted as ⟨𝑚𝑚,𝑢𝑢⟩, where 𝑚𝑚 is the signature of the
source method, and 𝑢𝑢 is the type of the returned taint object. We use 𝑡𝑡𝑙𝑙𝑢𝑢 to denote a
taint object, where 𝑢𝑢 is type of the object, and 𝑙𝑙 is the call site where the object is
created. For simplicity, you just need to use empty context as the heap contexts of taint
objects.

Taint Transfer. Although taint analysis and pointer analysis are similar as they both
track data flow in the program, they have a subtle difference. Compared to object, taint
is a more abstract concept. Taint is associated with the contents of the data1, so that it
can be transferred among objects, and such phenomenon is called taint transfer. Below
we use an example to illustrate this concept.
1 String taint = getSecret(); // source
2 StringBuilder sb = new StringBuilder();
3 sb.append("abc");
4 sb.append(taint); // taint is transferred to sb
5 sb.append("xyz");
6 String s = sb.toString(); // taint is transferred to s
7 leak(s); // sink

Figure 1. An example of taint transfer.

Suppose that we consider getSecret() and leak() as source and sink, respectively.
In this example, the code at line 1 retrieves secret data (in form of a string) and stores
it in variable taint, and the secret data will finally flow to sink (line 7) via two taint
transfers:

1) The method call to append() at line 4 appends the contents of taint to sb,
so the StringBuilder pointed to by sb contains the secret data and should
also be treated as tainted data; in other words, append() at line 4 transfers taint
from taint to sb.

2) The method call to toString() at line 6 converts the StringBuilder to a
String, which contains the same contents of the StringBuilder, so the
String includes the secret data; in other words, toString() transfers taint
from sb to s.

Such patterns are common in real code, and if we cannot handle them properly, many
security vulnerabilities would be missed. The reason is that regular taint analysis is
unaware of the semantics of the APIs in the program, e.g., methods append() and
toString() can transfer the contents (together with sensitive data) among different
objects as shown in the above example, thus the taint analysis would fail to propagate
taints without handling these methods properly.

To address this problem, we need to tell taint analysis which methods can trigger taint
transfers and how they transfer taints. In this assignment, we consider three common
patterns of taint transfers when a (taint-transfer-relevant) method foo is called:

1 Neville Grech and Yannis Smaragdakis, “P/Taint: Unified Points-to and Taint Analysis”. OOPSLA’17.

3

1) Base-to-result: if the receiver object (pointed to by base) is tainted, then the

return value of the method call (pointed to by result) should also be tainted,
e.g., StringBuilder.toString().

2) Arg-to-base: if a specified argument is tainted, then the receiver object (pointed
to by base) should also be tainted, e.g., StringBuilder.append(String).

3) Arg-to-result: if a specified argument is tainted, then the return value of the
method call (pointed to by result) should also be tainted, e.g.,
String.concat(String).

Note that static methods will not cause base-to-result and arg-to-base transfers as they
do not have base variables. Besides, some methods may cause multiple taint transfers,
e.g., String.concat(String) triggers not only arg-to-result but also base-to-result
transfers, as its result contains the contents of both argument and receiver object.

Handling Taint Transfer. The essence of taint transfer is that the method calls to some
methods will trigger propagation of taints from specific variables to some other
variables of the call sites. We call source of taint transfer from-variable, and target of
taint transfer to-variable, e.g., for a base-to-result transfer, the base variable of the call
site is from-variable, and the LHS variable of the call site is to-variable.

We define another input of taint analysis, called TaintTranfers, which is a set of four-
element tuples, denoted as ⟨𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡,𝑢𝑢⟩ , where 𝑚𝑚 indicates the method that
triggers taint transfer, from the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 variable to the 𝑡𝑡𝑡𝑡 variable, and 𝑢𝑢 is the type of
the transferred taint object (pointed to by 𝑡𝑡𝑡𝑡) . Specifically,

• 𝑚𝑚 is a signature of the method that triggers taint transfer, and
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is either an integer value (starting from 0) when it represents an argument,

or the string “base” when it represents a base variable, and
• 𝑡𝑡𝑡𝑡 is either the string “base” when it represents a base variable, or the string

“result” when it represents an LHS variable of the call site, and
• 𝑢𝑢 is the type of the transferred taint object. As a taint transfer may change the

type of the taint object (e.g., StringBuilder.toString() transfers a taint
object of type StringBuilder to a taint object of type String), then we need
𝑢𝑢 to tell the taint analysis what the type of the transferred taint object is. It
would be particularly useful when the type of the transferred object (pointed to
by 𝑡𝑡𝑡𝑡) differs from the type of the taint object pointed to by 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

Based on TaintTranfers, we define the rules to handle the three patterns of taint transfers
as follows:

4

Kind Statement Rule (under context 𝑐𝑐)

Call (base-to-
result)

l: r = x.k(a1,…,an)

𝑐𝑐: 𝑙𝑙 → 𝑐𝑐𝑡𝑡:𝑚𝑚 ∈ 𝐶𝐶𝐶𝐶
⟨𝑚𝑚, "base", "result",𝑢𝑢⟩ ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

[]: 𝑡𝑡𝑗𝑗𝑢𝑢′ ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑥𝑥)
[]: 𝑡𝑡𝑗𝑗𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑟𝑟)

Call (arg-to-
base)

l: r = x.k(a1,…,an)

𝑐𝑐: 𝑙𝑙 → 𝑐𝑐𝑡𝑡:𝑚𝑚 ∈ 𝐶𝐶𝐶𝐶
⟨𝑚𝑚, 𝑖𝑖, "base",𝑢𝑢⟩ ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

[]: 𝑡𝑡𝑗𝑗𝑢𝑢′ ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑎𝑎𝑎𝑎)
[]: 𝑡𝑡𝑗𝑗𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑥𝑥)

Call (arg-to-
result)

l: r = x.k(a1,…,an)

𝑐𝑐: 𝑙𝑙 → 𝑐𝑐𝑡𝑡:𝑚𝑚 ∈ 𝐶𝐶𝐶𝐶
⟨𝑚𝑚, 𝑖𝑖, "result",𝑢𝑢⟩ ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

[]: 𝑡𝑡𝑗𝑗𝑢𝑢′ ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑎𝑎𝑎𝑎)
[]: 𝑡𝑡𝑗𝑗𝑢𝑢 ∈ 𝑝𝑝𝑝𝑝(𝑐𝑐: 𝑟𝑟)

Configuration for Taint Analysis. To make the taint analysis flexible, we design a
configurable taint analysis which allows you to configure sources, sinks and taint
transfers in one YAML2 file. As an example, you could read src/test/resources/
pta/taint/taint-config.yml in this assignment package.

The format of a source entry is:

{ method: <METHOD_SIGNATURE>, type: <TYPE_NAME> }
where

• <METHOD_SIGNATURE> is the signature of the source method
• <TYPE_NAME> is the name of the type of taint object returned from the call to

the source method

In pointer analysis, each object has a type, so do taint objects. We need to specify the
types of the taint objects in the configuration, as the taint analysis should create a taint
object of this type when handling the calls to the source method.

The format of a sink entry is:

{ method: <METHOD_SIGNATURE>, index: <INDEX> }
where

• <METHOD_SIGNATURE> is the signature of the sink method
• <INDEX> is the index of the sensitive argument, starting from 0 (typically, only

arguments are considered as sinks)

2 https://yaml.org/

https://yaml.org/

5

The format of a taint transfer entry is:
{ method: <METHOD_SIGNATURE>, from: <INDEX>, to: <INDEX>,

type: <TYPE_NAME> }
where the four elements exactly correspond to the ones in TaintTranfers defined above.

2.2 Tai-e Classes You Need to Know

The classes related to context-sensitive pointer analysis have been introduced in
Assignment 6. Below we introduce the classes that are specific to taint analysis.

 pascal.taie.analysis.pta.plugin.taint.Source

This class represents sources.

 pascal.taie.analysis.pta.plugin.taint.Sink

This class represents sinks.

 pascal.taie.analysis.pta.plugin.taint.TaintTransfer

This class represents taint transfers. In this class, we use integers to identify from-
and to-variables. Specifically, if the value of the integer is 0 or larger number, it
represents the corresponding argument of a call site (of the method specified in the
TaintTransfer); if the value is -1, it represents the base variables of a call site;
if the value is -2, it represents the LHS variables of a call site.

 pascal.taie.analysis.pta.plugin.taint.TaintConfig
This class represents configuration of taint analysis. It provides APIs to parse
configuration file and obtain the sources, sinks, and taint transfers specified in the
configuration.

 pascal.taie.analysis.pta.plugin.taint.TaintManager

This class manages taint objects in taint analysis.

 pascal.taie.analysis.pta.plugin.taint.TaintFlow

This class represents the detected taint flows (described by the call sites of the taint
source and sink), i.e., the result of taint analysis.

 pascal.taie.analysis.pta.plugin.taint.TaintAnalysiss

This class implements taint analysis. It is incomplete, and you need to finish it as
explained in Section 2.3. (Note that the class name is TaintAnalysiss in this
assignment as TaintAnalysis has already been used in the non-assignment-
version of taint analysis in Tai-e :-/)

6

2.3 Your Task [Important!]

In this assignment, you need to finish the methods of two classes listed below:
pascal.taie.analysis.pta.cs.Solver:
 void addReachable(CSMethod)
 void addPFGEdge(Pointer,Pointer)
 void analyze()
 PointsToSet propagate(Pointer,PointsToSet)
 void processCall(CSVar,CSObj)
pascal.taie.analysis.pta.plugin.taint.TaintAnalysiss
 Set<TaintFlow> collectTaintFlows(): returns a set that contains all taint

flows detected by the taint analysis. You could implement the rule to handle sink
(given in Section 2.1) in this method.

The five methods of Solver to be finished are the same as in Assignment 6, but this
time, you need to add some code to some of these methods for supporting taint analysis.
Do not directly replace Solver.java by your implementation of Assignment 6, as the
skeleton file Solver.java in this assignment contains some code related to taint
analysis.

In this assignment, you may need to read points-to results to help develop and debug
taint analysis. Other context sensitivity variants add context information to points-to
results, which may increase reading difficulty. Thus, we choose CISelector (context
insensitivity) as the default context selector to ease the development and debugging.
After you finish TaintAnalysiss and Solver, you could try other context sensitivity
variants as explained in Section 3 to observe the precision differences of taint analysis
under different context-sensitivity variants.

As for TaintAnalysiss, in addition to collectTaintFlows(), you also need to
implement the logics to handle sources and taint transfers in this class. Again, this
assignment is open, and thus you need to resolve the implementation details by yourself,
including how to design and implement your APIs of TaintAnalysiss.

Hints: 1) In the constructor of TaintAnalysiss, we have provided the code to parse
configuration file and store the result in field config, so that you could directly use it.
Besides, we initialize a TaintManager and store it in field manager, and you could
use it to manage taint objects. If your implementation of TaintAnalysiss requires
initialization work, you could also do it in the constructor.

2) In this assignment, pointer and taint analyses depend on each other. Both Solver
and TaintAnalysiss hold a reference to each other, i.e., field taintAnalysis in

7

Solver and field solver in TaintAnalysiss. You need to figure out how to use the
references to implement the interactions between two analyses. You can add APIs and
fields to both classes if necessary.

3 Run and Test Your Implementation

You can run the analyses as described in Tai-e Manual for Assignments. In this
assignment, Tai-e performs context-sensitive pointer analysis and taint analysis
together for the program, and outputs the points-to sets of all kinds of pointers and
detected taint flows:

Points-to sets are empty and none of taint flows are detected as you have not finished
the analyses yet. After you implement the analyses, the output should be like (points-to
results are omitted):

In addition, Tai-e outputs the IRs for the classes of the program it analyzes to folder
output/. The IRs are stored as .tir files which can be opened by general text editors.

We provide class pascal.taie.analysis.pta.TaintTest as the test drivers for
taint analysis, and you could use it to test your implementation as described in Tai-e
Manual for Assignments. Note that in this assignment, we only compare detected taint
flows with the ones given in the expected files. Other analysis results, e.g., points-to
sets, are ignored. Some test cases require context-sensitive pointer analysis, thus, to
pass all test cases, you need to copy the six context selectors from Assignment 6.

We encourage you to analyze some test cases (e.g., TaintInList.java) with other
context sensitivity variants (as explained in Assignment 6), e.g., context insensitivity
and 2-object sensitivity, and observe how the precision of pointer analysis affects the
precision of taint analysis.

8

4 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do NOT plagiarize. The work must be all your own!

5 Submission of Assignment

Your submission should be a zip file, which contains your implementation of

• TaintAnalysiss.java
• Solver.java

The naming convention your submission is: <STUDENT_ID>-<NAME>-A8.zip
Please submit your assignment to 教学立方.

6 Grading

The points will be allocated for correctness. We will use your submission to analyze the
given test files from the src/test/resources/ directory, as well as other tests of
our own, and compare your output to that of our solution.

Good luck!

	1 Assignment Objectives
	2 Implementing Taint Analysis
	2.1 Scope
	2.2 Tai-e Classes You Need to Know
	2.3 Your Task [Important!]

	3 Run and Test Your Implementation
	4 General Requirements
	5 Submission of Assignment
	6 Grading

