Tai-e Manual for Assignments

Course “Static Program Analysis” @Nanjing University
Assignments Designed by Tian Tan and Yue Li

1 Introduction

This manual describes how to setup Tai-e to finish the assignments in our course. Tai-e
is an easy-to-learn static program analysis framework for Java developed by the two
instructors of this course.

Tai-e leverages Soot to parse Java programs and help build Tai-e’s IR. Soot contains
two frontends, one for parsing Java source files (.java) and the other one for bytecode
files (.class), and the former can preserve variable names (in the source code) in IR,
which makes IR closer to the source code and thus is easier to understand than the latter.
As a result, in the assignments, we provide test cases (i.e., the input programs to be
analyzed) in the format of .java files. However, Soot’s frontend for Java source files is
outdated (only partially supports Java version up to 7) and not very robust. Meanwhile,
Soot’s frontend for bytecode files, which does not keep variable names though, is more
robust (it virtually works well for all .class files compiled, at least, by Java 11) than the
frontend for Java source files. Thus, for real-world applications, Tai-e usually
analyzes bytecode.

2 Content of Assignment Package

Tai-e is built by Gradle and follows typical structure of Gradle projects. All assignment
packages are organized as the same structure as follows:

e build.gradle, gradlew, gradlew.bat, gradle/: Gradle scripts and
configuration files for Tai-e.

e src/main/java: The folder containing source code of Tai-e. You will need to
modify the files in this folder to finish the assignments.

e src/test/java: The folder containing the drivers for running test cases.

e src/test/resources: The folder containing test cases (i.e., the input Java
programs to be analyzed).

e 1ib/: The folder containing classes needed by Tai-e.

e plan.yml: The configuration file for Tai-e that specifies the analyses to be
executed in the assignments.

e copyright.txt: The copyright of Tai-e.

3 Setup Instructions

Tai-e is developed in Java, and it could run on major operating systems including
Windows, MacOS, and Linux (Ubuntu). To build and run Tai-e, you need to have Java
11 installed on your system. You could download the Java Development Kit 11 from
the following link:
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

We highly suggest you finish our assignments with IntelliJ IDEA. Given the Gradle
build script, it is very easy to import Tai-e to IntelliJ IDEA, as follows.

Step 1
Download IntelliJ IDEA from JetBrains (http://www.jetbrains.com/idea/download/)
and install it.

Step 2

Start to open a project

& Welcome to Intelli) IDEA — m| X
Intelli) IDEA Q Search projects New Project Open Get from VCS

2021.2.1 /

Projects
Customize
Plugins

Learn Intelli) IDEA

Nothing to show

(Note: if you have already used IntelliJ IDEA, and opened some projects, then you
could choose File > Open... to open the same dialog for the next step.)

Step 3
Select the tai-e/ directory, then click “OK”.

g Open File or Project X
A O Kk kg X S| § Hide path
E\Assignments\A1\tai-e v
v E:

v Assignments
v Al
> lib
> src
@ build.gradle
Drag and drop a file into the space above to quickly locate it in the tree

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.jetbrains.com/idea/download/

Step 4
IntelliJ IDEA may pop up a dialog asking if you trust the Gradle project. Just click
“Trust Project” (Don’t worry. Tai-e is benign :-)).

Trust and Open Gradle Project?

If you don't trust the source, preview the project in the safe mode to
only browse its code.

Loading, running, or building a Gradle project may execute potentially
malicious code from its build scripts.

Trust projects in E:/Assignments/A1

~

? Trust Project Preview in Safe Mode Don't Open

That’s it! You may wait a moment for importing Tai-e. After that, some Gradle-related
files/folders will be generated in tai-e/ directory, and you can ignore them.

Step 5 (optional)
As Tai-e is a Gradle project, IntelliJ IDEA always build and run it with Gradle by default,
which makes it a bit slower and always output some annoying Gradle-related messages:

Run: tai-e [:Assignment.main
9
> tai-e [:Assignment.main()]: successful 14:37:10: Executing task ‘:Assignment.main()’...
}4 > Task :compileJava
> Task :processResources NO-SOURCE
> Task :classes
— > Task :Assignment.main()

To get rid of these problems, you could use IntelliJ IDEA instead of Gradle to build and
run Tai-e. Just go to File > Settings, and change the build and run tool from Gradle to
IntelliJ IDEA as shown:

a Settings

~

Q- Build, Execution, Deployment > Build Tools * Gradle

> Appearance & Behavior .
General settings

Keymap
> Editor Gradle user home:
Plugins O\..rerride the default location where Gradle stores downl
Windows
> Version Control

Generate *.iml files for modules imported from Gradle
* Build, Execution, Deployment Enable if you have a mixed project with Intelli) IDEA modules and Gradle

~ Build Tools
Gradle projects

> Maven
Gradle = Download external annotations for dependencies
Gant)
Build and run
> Compiler
By default Intelli) IDEA uses Gradle to build the projec
> Debugger
Remote Jar Repositories In a pure Java/Kotlin project, building and running by
optimizations. Note, that the IDE doesn't support all ¢
Python Debugger correctly with some of them.
> Deployment
Build and run using: = IntelliJ IDEA v
> Android Default: Gradle
Aralfifiem Semiae Change to IntelliJ IDEA Run tests using: Intelli) IDEA -

Notice: If your system has multiple JDKs, make sure that IntelliJ IDEA uses Java 11.
To configure this, go to File > Project Structure..., and select 11 for “Project SDK”
and “Project language level”:

) Project Structure

Project name:

. . tai-e
Project Settings

el Project SDK:

Modules This SDK is default for all project modules.
A module specific SDK can be configured for each of the modules as required.

Libraries
Facets —alp- = 11 java version "11.0.4 v Edit
Artifacts Project language level:
Platform Settings This language level is default for all project modules.
SDKs A module specific language level can be configured for each of the modules as required.
Global Libraries > SDK default (11 - Local variable syntax for lambda parameters) -

Alternatively, if you (really :-)) want to build Tai-e from command line, you could
change working directory to tai-e/ folder, and build it with Gradle:

$ gradle compileJava

4 Run Tai-e as An Application

We provide a special main class of Tai-e for our assignments:
pascal.taie.Assignment

which offers a simple usage as follows:
-cp <CLASS_PATH> -m <CLASS_NAME>

where <CLASS_PATH> is the class path, and <CLASS_NAME> is the name of the input
main class to be analyzed. Tai-e locates classes from given class path. For example, to
analyze Assign.java in directory src/test/resources/dataflow/livevar,
first open “Run Configuration” for Assignment in IntelliJ IDEA as follows:

. . . . » .
tai-e ' src) main ;) java / pascal / taie) ‘€ Assignment

9 Projectr € = = & — < Assignment.java
°
a Vv g tai-e C:\Users\compi\Documents
- N VEzS
.gradle . .
; * Main class for assignments.
> .idea
*/
> gradle > public class Assignment {
> Mlib © T
v src E—) nithldia ~r+tatin vandid mainl(Ctninall Anae)
o main P> Run 'Assignment.main()' Ctrl+Shift+F10
[
o java #F Debug 'Assignment.main()’ yLit
v pascal.taie U, Run 'Assignment.main()' with Coverage lemer
i 4 ‘Assi in()" with * i 2 s);
c double click EEEES C} Run 'Assignment.main()" with 'Java Flight Recorder o
ir ny @} Run 'Assignment.main()’ with ‘Windows Async Profiler' ri
> i Modify Run Configuration...
util.graph e fy \.,N-....w..,,. I | |

8 Assignment }

then configure program arguments as follows:

g Run/Debug Configurations X
+ - B H K
v Application Name: Assignment Store as project file

Assignment :
Runon: | A Local machine ¥ Manage targets...

Run configurations may be executed locally or on a target: for
example in a Docker Container or on a remote host using SSH.

Build and run AR et Als.na
java 11 v tai-e.main h 4

pascal.taie.Assignment

|-cp src/test/resources/dataflow/livevar -m Assignl

Tai-e performs the analysis for the input program and outputs the analysis results. The
analyses and their outputs vary for different assignments, and we will explain the details
in the document of each assignment.

Of course, you could also run the analysis using Gradle, with the following command:
$ gradle run --args=”"-cp <CLASS_PATH> -m <CLASS_NAME>”

S Test Your Assignments with JUnit

To make testing convenient, we have prepared some Java classes as test inputs in folder
src/test/resources/. Every class has an associated file named *-expected. txt,
which contains the expected results of the analysis. You could analyze these test inputs
by running test class (powered by JUnit) in src/test/java/. Different assignments
contain different test cases and test case drivers, and we will explain their details in
each assignment document.

The test case driver analyzes all provided test cases in src/test/resources/, and
compares the given analysis results to the expected results. If your implementation is
correct, the tests will pass; otherwise it may fail and output the differences between
expected and your results.

Again, you could run tests with Gradle, just type:
$ gradle clean test

This command will clean the build directory, rebuild Tai-e, and run tests.

	1 Introduction
	2 Content of Assignment Package
	3 Setup Instructions
	4 Run Tai-e as An Application
	5 Test Your Assignments with JUnit

