
1

Programming Assignment 4: Pointer Analysis
Course “Static Program Analysis” @Nanjing University

Assignments Designed by Tian Tan and Yue Li
Due: 23:00, Thursday, December 17, 2020

1 Goal

In this programming assignment, you will implement whole-program context-
insensitive pointer analysis for Java based on Bamboo. The pointer analysis builds a
call graph on the fly. To show the usefulness of pointer analysis, we provide an
interprocedural constant propagation, which uses the call graph constructed by your
pointer analysis. If your implementation is correct, you can observe that pointer analysis
can build a more precise call graph than class hierarchy analysis (CHA). Consequently,
interprocedural constant propagation based on pointer analysis achieves better
precision than CHA (please see Section 3.6 for more details). Again, you only need to
consider a small subset of Java features.

2 Introduction to Bamboo

Bamboo is a static program analysis framework developed by the two instructors of this
course, and it supports multiple static analyses (e.g., data-flow analysis, pointer analysis,
etc.) for Java. Bamboo leverages Soot as front-end to parse Java programs and construct
IRs (Jimple). In this assignment, we include the necessary classes for pointer analysis.
In addition, we also include an interprocedural data-flow analysis framework and an
interprocedural constant propagation to demonstrate the usefulness of pointer analysis.

2.1 Content of Assignment

The content resides in folder bamboo/, which includes:

• analyzed/: The folder containing test input files.

• libs/: The folder containing Soot classes with its dependencies.
• src/: The folder containing the source code of Bamboo. You will need to

modify a file in this folder to finish this assignment.
• test/: The folder containing test classes.

• build.gradle: The Gradle build script for Bamboo.

• copyright.txt: The copyright of Bamboo.

2.2 Setup Instructions (Same as Assignment 1)

Bamboo is written in Java, so it is cross-platform. To build and run Bamboo, you need

2

to have Java 8 installed on your system (other Java versions are currently not supported).
You could download the Java Development Kit 8 from the following link:
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

We highly recommend you to finish this (and the following) assignment(s) with IntelliJ
IDEA. Given the Gradle build script, it is very easy to import Bamboo to IntelliJ IDEA,
as follows.

Step 1
Download IntelliJ IDEA from JetBrains (http://www.jetbrains.com/idea/download/)

Step 2
Start to import a project

(Note: if you have already used IntelliJ IDEA, and opened some projects, then you
could choose File > New > Project from Existing Sources… to open the same dialog
for the next step.)

Step 3
Select the bamboo/ directory, then click “OK”.

Step 4
Import project from external model Gradle, then click “Finish”.

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://www.jetbrains.com/idea/download/

3

That’s it! You may wait a moment for importing Bamboo. After that, some Gradle-
related files/folders will be generated in Bamboo directory, and you can ignore them.

Step 5
Since Bamboo is imported from Gradle model, IntelliJ IDEA always build and run it
with Gradle, which makes it a bit slower and always output some annoying Gradle-
related messages:

Thus, we suggest you disable the Gradle in IntelliJ IDEA. Just go to File > Settings,
and change the build and run tool from Gradle to IntelliJ IDEA as shown:

Notice: If your system has multiple JDKs, make sure that IntelliJ IDEA uses Java 8
(otherwise you may experience NullPointerException thrown by Soot). To

4

configure this, go to File > Project Sturcture…, and select 1.8 for Project SDK:

Alternatively, if you (really :-)) want to build Bamboo from command line, you could
change working directory to Bamboo folder, and build it with Gradle:

$ gradle compileJava

3 Implementation of Pointer Analysis

This Section introduces the necessary knowledge about Bamboo and your task for this
assignment. Note that Soot’s Jimple IR is sophisticated and contains rich information,
however, many of them are irrelevant to pointer analysis, and it is not that convenient
to extract pointer-relevant information. To ease the implementation of pointer analysis,
we have designed and implemented a new pointer analysis IR in Bamboo, which
provides convenient APIs to obtain pointer-relevant information and excludes
unnecessary details about the program statements. Our pointer analysis IR provides all
information you need to implement pointer analysis, so in this assignment, you do not
need to touch any Soot classes.

3.1 Scope

The scope of this assignment is the same as explained in Lecture 8. We deal with two
kinds of pointer in Java (local variable and instance field), and five pointer-affecting
statements, i.e., new, assign, store, load and call. Our pointer analysis handles not only
virtual calls but also special and static calls.

3.2 Bamboo Classes You Need to Know

To implement pointer analysis in Bamboo, you need to know the following classes. We
start with the classes for pointer analysis IR in Bamboo.

 bamboo.pta.element.Variable

This class represents local variables. It provides some convenient APIs to obtain
relevant statements of a variable, as explained below.

 Set<InstanceStore> getStores(): returns the store statements (we
will introduce InstanceStore later) whose base variable is this variable.

5

 Set<InstanceLoad> getLoads(): returns the load statements (we will
introduce InstanceLoad later) whose base variable is this variable.

For example, suppose we are analyzing the following code snippet:
1 x = y;
2 x.h = a;

 3 a.h = z;
 4 a = x.f;
 5 b = y.f;
 6 c = x.g;

If var represents variable x, then var.getStores() returns the store statements
at line 2, and var.getLoads() returns the load statements at lines 4 and 6.

 bamboo.pta.element.Field

This class represents fields.

 bamboo.pta.element.Obj
This class represents abstract objects.

 bamboo.pta.element.CallSite
This class represents call sites.

 bamboo.pta.element.Method
This class represents methods.

 Set<Statement> getStatements(): returns the pointer-affecting
statements in this method. Statement has five subclasses, corresponding to
the five pointer-affecting statements.

Below we introduce these classes.

 bamboo.pta.statement.Allocation
This class represents allocation statements, e.g., x = new T().

 Variable getVar(): returns the LHS variable (x) of the allocation site.

 Object getAllocationSite(): returns the identifier of the allocation site.

 bamboo.pta.statement.Assign

This class represents assign statements, e.g., x = y.

6

 Variable getTo(): returns the LHS variable (x) of the assignment.

 Variable getFrom(): returns the RHS variable (y) of the assignment.

 bamboo.pta.statement.InstanceStore
This class represents assign statements, e.g., x.f = y.

 Variable getBase(): returns the base variable (x) of the store.

 Field getField(): returns the field (f) of the store.

 Variable getFrom(): returns the RHS variable (y) of the store.

 bamboo.pta.statement.InstanceLoad
This class represents assign statements, e.g., y = x.f.

 Variable getTo(): returns the LHS variable (y) of the load.

 Variable getBase(): returns the base variable (x) of the load.

 Field getField(): returns the field (f) of the load.

 bamboo.pta.statement.Call
This class represents method calls. Since implementation of method call is not your
concern in this assignment, we do not introduce this class in detailed.

Now we introduce the classes for pointer flow graph (PFG).

 bamboo.pta.analysis.ci.Pointer
This class represents the pointers in the analysis, i.e., the nodes in the PFG. Each
pointer corresponds to a variable or an instance field in the program and is
associated with a points-to set.

 PointsToSet getPointsToSet(): returns the points-to set of this pointer.
Each pointer is automatically associated with an empty set on creation, so this
method always returns a set (not null).

This class has two subclasses, as introduced below.

 bamboo.pta.analysis.ci.Var
This class represents variable nodes in the PFG, and each of its instance
corresponds to a variable.

 Variable getVariable(): returns the corresponding variable of this node.

7

 bamboo.pta.analysis.ci.InstanceField
This class represents instance field nodes in the PFG, and each of its instance
corresponds to an instance field (e.g., 𝑜𝑜𝑖𝑖. 𝑓𝑓).

 Obj getBase(): returns the corresponding base object of this node.

 Field getField(): returns the corresponding field of this node.

 bamboo.pta.analysis.ci.PointsToSet

This class represents points-to sets, i.e., sets of Obj in pointer analysis.

 boolean addObject(Obj): adds an object to this points-to set, if the given
object is already in the set, then returns false, otherwise, returns true.

 boolean isEmpty(): returns if this points-to set is empty.

 Iterator<Obj> iterator(): returns an iterator over this points-to set for
iterating its objects. Also, this method means that PointsToSet is iterable,
i.e., you can iterate the objects in a points-to set in this way:
PointsToSet pts = …
for (Obj obj : pts) { … }

 bamboo.pta.analysis.ci.PointerFlowGraph

This class represents a pointer flow graph of the program. It also maintains the
mapping from variables/instance fields to corresponding pointers (PFG nodes).

 Var getVar(Variable): returns the corresponding variable node of the
given variable (this method also adds the returned pointer to the PFG).

 InstanceField getInstanceField(Obj,Field): returns the
corresponding instance field node of the given object and field (this method
also adds the returned pointer to the PFG).

 boolean addEdge(Pointer s,Pointer t): adds an edge s → t to this
PFG. If the edge is already in the PFG, returns false, otherwise, returns true.

 Set<Pointer> getSuccessorsOf(Pointer): returns the successors of
given pointer (PFG node) on the PFG.

Now we introduce the classes for pointer analysis algorithm.

 bamboo.pta.analysis.ci.WorkList
This class represents the worklist in pointer analysis algorithm.

 void addPointerEntry(Pointer,PointsToSet): adds a worklist
entry, i.e., a pair of a pointer and a points-to set (whose objects should be
propagated to the points-to set of the pointer) to the worklist.

 bamboo.pta.analysis.ci.PointerAnalysis

This class implements the pointer analysis algorithms (i.e., the algorithm in page

8

of 115 for Lecture 10, please see the slides on the course website). It is incomplete,
and you need to finish it as explained in Section 3.3.

 void solve(): starts the pointer analysis algorithm.

 void initialize(): implements the first two lines of the pointer analysis
algorithm, i.e., initializes various data structures and analyzes entry methods.

 void analyze(): implements the big while-loop in the pointer analysis
algorithm, which processes worklist entries until it is empty.

 bamboo.pta.analysis.ci.Main

This is the main class of pointer analysis, which performs the analysis for input
Java program. We introduce how to run this class in Section 3.4.

3.3 Your Task [Important!]

In this assignment, you need to finish class PointerAnalysis, which implements
pointer analysis algorithm. For simplicity, we have included all code for handling
method calls, so you only need to implement the logic for handling new, assign, store,
and load statements in Java. Specifically, you will finish the following six methods:

 PointsToSet propagate(Pointer,PointsToSet)

This method implements difference set computation (Δ = pts – pt(n)) and the
Propagate function given in page 43 of the slides for Lecture 9, e.g.,
propagate(p,pts) propagates pts into pt(p), and returns pts – pt(p). We
merge these two steps into one method for reducing redundant computation.

 Hint: You could uncomment the println() invocation in this method to
observe how points-to sets are propagated to the pointers. This could help
you debug and better understand pointer analysis algorithm.

 void addPFGEdge(Pointer,Pointer)

This method implements the AddEdge function given in page 43 of the slides
for Lecture 9.

 void processAllocations(Method)

This method processes allocations (i.e., new statements) in a new reachable
method, which corresponds to the first foreach loop in the AddReachable
function given in page 118 of the slides for Lecture 10.

 Hint: You need heap model (heap abstraction) to obtain abstract object.
We apply allocation-site abstraction, so each allocation site produces one
abstract object. You can use heapModel (a field of PointerAnalysis)
to do this. E.g., suppose alloc is an instance of Allocation, then you
can obtain its corresponding abstract object in this way:

Object allocSite = alloc.getAllocationSite();
Obj obj = heapModel.getObj(allocSite, alloc.getType(), method);

9

where method is the given method.

 void processLocalAssign(Method)

This method processes local assignments (e.g., x = y) in a new reachable
method, which corresponds to the second foreach loop in the AddReachable
function given in page 118 of the slides for Lecture 10.

 void processInstanceStore(Var,PointsToSet)

This method processes instance stores (e.g., x.f = y), which corresponds to
the foreach loop for handling store statements in the Solve function given in
page 124 of the slides for Lecture 10. The first parameter (Var) is the variable
node whose points-to set changes (i.e., x), and the second parameter
(PointsToSet) is the changed part (i.e., Δ in the algorithm).

 void processInstanceLoad(Var,PointsToSet)

This method processes instance loads (e.g., y = x.f), which corresponds to
the foreach loop for handling load statements in the Solve function given in
page 124 of the slides for Lecture 10. The first parameter (Var) is the variable
node whose points-to set changes (i.e., x), and the second parameter
(PointsToSet) is the changed part (i.e., Δ in the algorithm).

We have provided code skeletons for the above six methods, and your task is to fill the
part with comment “TODO – finish me”.

3.4 Run Pointer Analysis as an Application

As mentioned in Section 3.2, the main class of pointer analysis is
bamboo.pta.analysis.ci.Main

The format of its arguments is:
-cp <CLASS_PATH> <CLASS_NAME>

<CLASS_PATH> is the class path, and <CLASS_NAME> is the name of the input class to
be analyzed. Bamboo locates input class from given class path. For example, to analyze
the New.java in class path analyzed/, just configure program arguments in IntelliJ
IDEA as follows:

For each input program, Bamboo performs pointer analysis, and outputs the analysis
results, including (1) reachable methods; (2) call graph edges; (3) points-to sets of all
variables; (4) points-to sets of all instance fields. Bamboo prints a variable with format

<method>/<name>
where <method> is the method which the variable is declared in, and <name> is the
variable name, and it prints an object with format

<method>/new <Type>/<line>
where <method> is the method containing the allocation site of the object, <Type> is
type of the object, and <line> is the line number of the allocation site. You can use

10

this information to help develop and debug. We encourage you to write some Java
classes and analyze them.

Of course, you could also run the analysis using Gradle, with the following command:

$ gradle run --args=”-cp <CLASS_PATH> <CLASS_NAME>”

3.5 Test Pointer Analysis with JUnit

To make testing convenient, we have prepared some Java classes as test inputs in folder
analyzed/. Every class has an associated file named *-expected.txt, which
contains the expected results of pointer analysis, i.e., the points-to sets of all variables
and instance fields. You could analyze these test inputs by running test class (powered
by JUnit):

bamboo.pta.PTATest
This test class analyzes all provided Java classes in analyzed/, and compares the
given analysis results to the expected results. If your implementation of pointer analysis
is correct, the tests will pass, otherwise it fails and outputs the differences between
expected and given results.

Again, you could run tests with Gradle, just type:

$ gradle clean test

This command will delete the build directory, rebuild Bamboo, and run tests.

3.6 Run Interprocedural Constant Propagation

As mentioned in Sections 1 and 2, to demonstrate the usefulness of pointer analysis (it
can build more precise call graph than CHA), this assignment contains an
interprocedural constant propagation, which uses your implementation of pointer
analysis to build call graph, interprocedural control-flow graph (ICFG), and performs
constant propagation on the ICFG. The main class of the analysis is:

bamboo.dataflow.analysis.constprop.PTAMain

The format of its arguments is:
-cp <CLASS_PATH> <CLASS_NAME>

We also provide a test case PTACP.java in analyzed/, which comes from Lecture 8.
After you finish the pointer analysis, we recommend you to run both pointer analysis
based and CHA based constant propagation for the test case, to observe their analysis
results and precision differences.

Note that before you run intra- and interprocedural constant propagation, please replace
bamboo.dataflow.analysis.constprop.ConstantPropagation.java in
this Assignment package by your implementation for Assignment 2.

11

4 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do not plagiarize. The work must be all your own!

5 Submission of Assignment

Your submission should be a zip file, which contains your implementation of
PointerAnalysis.java
The naming convention is of the zip file is:

<STUDENT_ID>-<NAME>-A4.zip

Please submit your assignment through 教学立方.

6 Grading

The points will be allocated for correctness. We will use your submission to analyze the
given test files from the analyzed/ directory, as well as other tests of our own, and
compare your output to that of our solution.

Good luck!

	1 Goal
	2 Introduction to Bamboo
	2.1 Content of Assignment
	2.2 Setup Instructions (Same as Assignment 1)

	3 Implementation of Pointer Analysis
	3.1 Scope
	3.2 Bamboo Classes You Need to Know
	3.3 Your Task [Important!]
	3.4 Run Pointer Analysis as an Application
	3.5 Test Pointer Analysis with JUnit
	3.6 Run Interprocedural Constant Propagation

	4 General Requirements
	5 Submission of Assignment
	6 Grading

