
Static Program Analysis

Nanjing University

Yue Li

2020

CFL-Reachability and IFDS



1. Feasible and Realizable Paths

2. CFL-Reachability

3. Overview of IFDS

4. Supergraph and Flow Functions

5. Exploded Supergraph and Tabulation Algorithm

6. Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

But given a path, determine whether it is feasible is, in
general, undecidable.

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

But given a path, determine whether it is feasible is, in
general, undecidable.

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}
return r;

Enter foo

r = age r = -1

Exit foo

return r

Yue Li @ Nanjing University



Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

But given a path, determine whether it is feasible is, in
general, undecidable.

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}
return r;

Enter foo

r = age r = -1

Exit foo

return r

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1

Yue Li @ Nanjing University



Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”

Yue Li @ Nanjing University



Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”

• Realizable paths may not be executable, but unrealizable paths
must not be executable.

• Our goal is to recognize realizable paths so that we could avoid
polluting analysis results along unrealizable paths.

Yue Li @ Nanjing University



Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”

• Realizable paths may not be executable, but unrealizable paths
must not be executable.

• Our goal is to recognize realizable paths so that we could avoid
polluting analysis results along unrealizable paths.

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

1:

2:

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

1:

2:

(1

)1

(2

)2

Yue Li @ Nanjing University



main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

1:

2:

(1

)1

(2

)2

Yue Li @ Nanjing University



CFL-Reachability

CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

Yue Li @ Nanjing University



CFL-Reachability

CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

• A valid sentence in language L must follow L’s grammar. 
• A context-free language is a language generated by 

a context-free grammar (CFG).

Yue Li @ Nanjing University



CFL-Reachability

CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

• A valid sentence in language L must follow L’s grammar. 
• A context-free language is a language generated by 

a context-free grammar (CFG).

CFG is a formal grammar in which every production is of the form:
S 𝛼𝛼

where S is a single nonterminal and 𝛼𝛼 could be a string of terminals
and/or nonterminals, or empty.

• S aSb
• S 𝜀𝜀

Context-free means S could be replaced by aSb/𝜀𝜀
anywhere, regardless of where S occurs.

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

Partially Balanced-Parenthesis Problem via CFL

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

e.g., (1 (2 e )2 )1 (3

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable e.g., (1 (2 e )2 )1 (3

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i

e.g., (1 (2 e )2 )1 (3

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

matched (i matched )i

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

matched (i matched )i
 e
 𝜀𝜀

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

matched (i matched )i
 e
 𝜀𝜀

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

e.g., (1 (2 e e e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

matched (i matched )i
 e
 𝜀𝜀
 matched matched

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

e.g., (1 (2 e e e )2 )1 (3 (4

Yue Li @ Nanjing University



CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizable matched realizable
 (i realizable
 𝜀𝜀

matched (i matched )i
 e
 𝜀𝜀
 matched matched e.g., e e (1 (2 e e e )2 )1 (3 (4 e

e.g., (1 (2 e )2 )1 (3

e.g., (1 (2 e )2 )1 (3 (4

e.g., (1 (2 e e e )2 )1 (3 (4

Yue Li @ Nanjing University



L(realizable):

Yue Li @ Nanjing University



L(realizable):

e(1eee)1e ∈ L(realizable)

Yue Li @ Nanjing University



L(realizable):

e(1eee)1e ∈ L(realizable) e(1eee)1e(2eee)1

∉ L(realizable)

Yue Li @ Nanjing University



IFDS

A Program Analysis Framework via Graph Reachability
Yue Li @ Nanjing University



IFDS

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95

Yue Li @ Nanjing University



IFDS

IFDS is for interprocedural data flow analysis
with distributive flow functions over finite domains.

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95

Yue Li @ Nanjing University



IFDS

IFDS is for interprocedural data flow analysis
with distributive flow functions over finite domains.

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95

Provide meet-over-all-realizable-paths (MRP) solution.

Yue Li @ Nanjing University



Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

pfp = fn 。…。f2 f1。

Yue Li @ Nanjing University



Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn 。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

Yue Li @ Nanjing University



Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn 。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

MRPn = ⊔
p ∈ RPaths(start, n)

pfp (⊥)

For each node n, MRPn provides a “meet-over-all-realizable-paths” solution
where RPaths(start, n) denotes the set of realizable paths (the path’s word is
in the language L(realizable)) from the start node to n.

Yue Li @ Nanjing University



Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn 。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

MRPn = ⊔
p ∈ RPaths(start, n)

pfp (⊥)

For each node n, MRPn provides a “meet-over-all-realizable-paths” solution
where RPaths(start, n) denotes the set of realizable paths (the path’s word is
in the language L(realizable)) from the start node to n.

MRPn ⊑ MOPn
Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Let n be a program point, data fact d ∈ MRPn, iff there is
a realizable path in G# from <smain, 0> to <n, d>.

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Let n be a program point, data fact d ∈ MRPn, iff there is
a realizable path in G# from <smain, 0> to <n, d>.

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Yue Li @ Nanjing University



Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.

Yue Li @ Nanjing University



Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)

GpGmain

Yue Li @ Nanjing University



Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
• Each flowgraph Gp has a unique start node sp, and a unique exit node ep

GpGmain

Yue Li @ Nanjing University



Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
• Each flowgraph Gp has a unique start node sp, and a unique exit node ep

• A procedure call is represented by a call node Callp, and a return-site node Retp

GpGmain

Yue Li @ Nanjing University



G* has three edges for each procedure call:

GpGmain

Supergraph

Yue Li @ Nanjing University



G* has three edges for each procedure call:
• An intraprocedural call-to-return-site edge from Callp to Retp

GpGmain

Supergraph

Yue Li @ Nanjing University



G* has three edges for each procedure call:
• An intraprocedural call-to-return-site edge from Callp to Retp
• An interprocedural call-to-start edge from Callp to sp of the called procedure

GpGmain

Supergraph

Yue Li @ Nanjing University



G* has three edges for each procedure call:
• An intraprocedural call-to-return-site edge from Callp to Retp
• An interprocedural call-to-start edge from Callp to sp of the called procedure
• An interprocedural exit-to-return-site edge from ep of the called procedure to Retp

GpGmain

Supergraph

Yue Li @ Nanjing University



Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

Yue Li @ Nanjing University



Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

λ eparam.ebody

Yue Li @ Nanjing University



Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

λ eparam.ebody
λ x.x+1𝑒𝑒.𝑔𝑔. ,

Yue Li @ Nanjing University



Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

λ eparam.ebody
λ x.x+1
(λ x.x+1)3

𝑒𝑒.𝑔𝑔. ,

Yue Li @ Nanjing University



Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

λ eparam.ebody
λ x.x+1
(λ x.x+1)3

⇒ 3+1
⇒ 4

𝑒𝑒.𝑔𝑔. ,

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S<x/a>

S with x renamed to a

a’s fact depends on x’s

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S<x/a>

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S<x/a>

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.S<x/a>

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S<x/a>

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S<x/a>

λ S.S

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S-{g}
λ S.S

λ S.S<x/a>

“call-to-return-site” edges allow to propagate local information

S-{g} helps reduce false positives (no soundness is hurt)

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S-{g}

λ S.S<x/a>

λ S.S

λ S.S-{a}

λ S.S-{a}

Out of local scope
Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S-{g}

λ S.S<x/a>

λ S.S

λ S.S-{a}

λ S.S-{a}

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Yue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

(at most (D+1)2 edges), where D is a finite set of dataflow facts

0 x g

0 x g

Yue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 x g

0 x g

Yue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

c

0 x g

0 x g

Yue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

cYue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

cYue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

cYue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

cYue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

Exploded Supergraph G# :
Each node n in supergraph G* is “exploded” into D+1 nodes in G#, and
each edge n1 ⟶ n2 in G* is “exploded” into the representation relation of
the flow function associated with n1 ⟶ n2 in G#

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

cYue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }

Edge: 0 ⟶ 0
Edge: 0 ⟶ d1

Edge: d1 ⟶ d2

0 a b

0 a b

λ S.S

0 a b

0 a b

λ S.{a}

0 a b

0 a b

λ S.(S-{a})∪{b}

c

c

thenS ∪{b}
λ S.ifa ∈S

elseS- {b}
0 a b

0 a b

c

c

Exploded Supergraph G# :
Each node n in supergraph G* is “exploded” into D+1 nodes in G#, and
each edge n1 ⟶ n2 in G* is “exploded” into the representation relation of
the flow function associated with n1 ⟶ n2 in G#

Yue Li @ Nanjing University



Why We Need Edge 0 ⟶ 0?

n2

n1

n4

n3

p

f1

f2

f3

f4

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =

Yue Li @ Nanjing University



Why We Need Edge 0 ⟶ 0?

n2

n1

n4

n3

p

f1

f2

f3

f4

Data facts are propagated via the composition of flow functions. In this case,
the “reachability” is directly retrieved from the final result in OUT[n4] .

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =

Yue Li @ Nanjing University



Why We Need Edge 0 ⟶ 0?

n2

n1

n4

n3

p

f1

f2

f3

f4

Data facts are propagated via the composition of flow functions. In this case,
the “reachability” is directly retrieved from the final result in OUT[n4] .

0 a b

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
<smain, 0> to <n4,a>, and the “reachability” is
retrieved by connecting the edges (finding out a
path) on the “pasted” representation relations

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =

0 a b
Yue Li @ Nanjing University



Why We Need Edge 0 ⟶ 0?

n2

n1

n4

n3

p

f1

f2

f3

f4

Data facts are propagated via the composition of flow functions. In this case,
the “reachability” is directly retrieved from the final result in OUT[n4] .

0 a b

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
<smain, 0> to <n4,a>, and the “reachability” is
retrieved by connecting the edges (finding out a
path) on the “pasted” representation relations

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =

0 a b

λ S.{a} says a holds at p regardless of input S;
however, without edge 0⟶0,

the representation relation for each edge
cannot be connected or “pasted” together,

like flow functions cannot be composed
together in traditional data flow analysis.

Thus IFDS cannot produce correct solutions via
such disconnected representation relations.

λ S.{a}

Yue Li @ Nanjing University



So We Need the “Glue Edge” 0 ⟶ 0!

n2

n1

n4

n3

p

f1

f2

f3

f4

Data facts are propagated via the composition of flow functions. In this case,
the “reachability” is directly retrieved from the final result in OUT[n4] .

0 a b

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
<smain, 0> to <n4,a>, and the “reachability” is
retrieved by connecting the edges (finding out a
path) on the “pasted” representation relations

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =

0 a b

λ S.{a}

λ S.{a} says a holds at p regardless of input S;
however, without edge 0⟶0,

the representation relation for each edge
cannot be connected or “pasted” together,

like flow functions cannot be composed
together in traditional data flow analysis.

Thus IFDS cannot produce correct solutions via
such disconnected representation relations.
Yue Li @ Nanjing University



Now, let’s build an exploded supergraph

Yue Li @ Nanjing University



λ S.{x,g}

Yue Li @ Nanjing University



λ S.{x,g}

Yue Li @ Nanjing University



λ S.S-{x}

Yue Li @ Nanjing University



λ S.S-{x}

Yue Li @ Nanjing University



λ S.S<x/a>

Yue Li @ Nanjing University



λ S.S<x/a>

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.if(a∈S) or(g∈S)
then S ∪ {a}
else S - {a}

Yue Li @ Nanjing University



λ S.if(a∈S) or(g∈S)
then S ∪ {a}
else S - {a}

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S-{a}

Yue Li @ Nanjing University



λ S.S-{a}

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S-{a}

Yue Li @ Nanjing University



λ S.S-{a}

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.S-{g}

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



λ S.S

Yue Li @ Nanjing University



Yue Li @ Nanjing University



Yue Li @ Nanjing University



Yue Li @ Nanjing University



Yue Li @ Nanjing University



Yue Li @ Nanjing University



Given an exploded supergraph, we apply
Tabulation algorithm to identify MRP solutions

Yue Li @ Nanjing University



Blue circles (final results) denote the nodes that
are reachable along realizable paths from <Smain,0>

Given an exploded supergraph, we apply
Tabulation algorithm to identify MRP solutions

Yue Li @ Nanjing University



Blue circles (final results) denote the nodes that
are reachable along realizable paths from <Smain,0>

Given an exploded supergraph, we apply
Tabulation algorithm to identify MRP solutions

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#

Yue Li @ Nanjing University



Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>

Tabulation
Algorithm

Yue Li @ Nanjing University



Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>

Let n be a program point, data fact d ∈ MRPn, iff there is a realizable
path in G# from <smain, 0> to <n, d>. (then d’s white circle turns to blue)

Tabulation
Algorithm

Yue Li @ Nanjing University



Tabulation Algorithm

O(ED3)

Yue Li @ Nanjing University



Tabulation Algorithm

No time to cover the
whole algorithm

O(ED3)

Yue Li @ Nanjing University



Tabulation Algorithm

No time to cover the
whole algorithm

But we will introduce its
core working mechanism

by a simple example

O(ED3)

Yue Li @ Nanjing University



Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

……

…

……

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

……

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



…

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

……

……

……

……

…

Yue Li @ Nanjing University



…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

……

……

……

…

Yue Li @ Nanjing University



…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

……

……

…

Yue Li @ Nanjing University



…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

……

……

…

When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).

Yue Li @ Nanjing University



…

…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

…

……

…

Actually, here a summary edge from <Call,dm> to <Ret,dn>
is added to indicate that dn is reachable from dm through the
called method p’. At the moment, some methods (like p’’)
may not be handled yet, so when handling p’’ later,
redundant work could be avoided for such reachable path.

When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).

Yue Li @ Nanjing University



… …

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

…

……

…

…

…

……

……

…

Yue Li @ Nanjing University



…

… …

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

…

…

…

…

…

……

……

…

Yue Li @ Nanjing University



…

… …

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

…

…

…

…

…

……

……

…

When a data fact (at node n) d’s circle is turned to blue,
it means that <n, d> is reachable from <Smain, 0>

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



• Can we do constant propagation using IFDS?

• Can we do pointer analysis using IFDS?

Constant propagation has infinite domain, but what if we only deal with
finite constant values? Can we still do it using IFDS?

Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



• Can we do constant propagation using IFDS?

• Can we do pointer analysis using IFDS?

Constant propagation has infinite domain, but what if we only deal with
finite constant values? Can we still do it using IFDS?

Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?

For constant propagation, we cannot define
F if we only know x’s (or y’s) value



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?

For constant propagation, we cannot define
F if we only know x’s (or y’s) value



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?

For constant propagation, we cannot define
F if we only know x’s (or y’s) value



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation

Regardless of the infinite domain issue, think about whether we could do
linear constant propagation, e,g., y = 2x + 3, or
copy constant propagation, e.g., x = 2, y = x, using IFDS-style analysis?

Yue Li @ Nanjing University

Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?

For constant propagation, we cannot define
F if we only know x’s (or y’s) value



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

z and y.f should have pointed to object [new T]. However, flow function’s
input data facts lack of the alias information, alias(x,y), alias(x.f,y.f), and 
we need alias information to produce correct outputs.

Yue Li @ Nanjing University



Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

z and y.f should have pointed to object [new T]. However, flow function’s
input data facts lack of the alias information, alias(x,y), alias(x.f,y.f), and 
we need alias information to produce correct outputs.

Note: If we want to obtain alias information in IFDS,
say alias(x,y), to produce correct outputs, we need
to consider multiple input data facts, x and y, which
cannot be done in standard IFDS as flow functions 
handle input facts independently (one fact per time). 
Thus pointer analysis is non-distributive.

Yue Li @ Nanjing University



1. Feasible and Realizable Paths

2. CFL-Reachability

3. Overview of IFDS

4. Supergraph and Flow Functions

5. Exploded Supergraph and Tabulation Algorithm

6. Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



The X You Need To Understand in This Lecture

• Understand CFL-Reachability

• Understand the basic idea of IFDS

• Understand what problems can be solved by IFDS

Yue Li @ Nanjing University



感谢陪伴，期待你们的未来

再见
Yue Li, Tian Tan @ Nanjing University

祝同学们在新的一年有新的收获



南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析


	Static Program Analysis
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	幻灯片编号 61
	幻灯片编号 62
	幻灯片编号 63
	幻灯片编号 64
	幻灯片编号 65
	幻灯片编号 66
	幻灯片编号 67
	幻灯片编号 68
	幻灯片编号 69
	幻灯片编号 70
	幻灯片编号 71
	幻灯片编号 72
	幻灯片编号 73
	幻灯片编号 74
	幻灯片编号 75
	幻灯片编号 76
	幻灯片编号 77
	幻灯片编号 78
	幻灯片编号 79
	幻灯片编号 80
	幻灯片编号 81
	幻灯片编号 82
	幻灯片编号 83
	幻灯片编号 84
	幻灯片编号 85
	幻灯片编号 86
	幻灯片编号 87
	幻灯片编号 88
	幻灯片编号 89
	幻灯片编号 90
	幻灯片编号 91
	幻灯片编号 92
	幻灯片编号 93
	幻灯片编号 94
	幻灯片编号 95
	幻灯片编号 96
	幻灯片编号 97
	幻灯片编号 98
	幻灯片编号 99
	幻灯片编号 100
	幻灯片编号 101
	幻灯片编号 102
	幻灯片编号 103
	幻灯片编号 104
	幻灯片编号 105
	幻灯片编号 106
	幻灯片编号 107
	幻灯片编号 108
	幻灯片编号 109
	幻灯片编号 110
	幻灯片编号 111
	幻灯片编号 112
	幻灯片编号 113
	幻灯片编号 114
	幻灯片编号 115
	幻灯片编号 116
	幻灯片编号 117
	幻灯片编号 118
	幻灯片编号 119
	幻灯片编号 120
	幻灯片编号 121
	幻灯片编号 122
	幻灯片编号 123
	幻灯片编号 124
	幻灯片编号 125
	幻灯片编号 126
	幻灯片编号 127
	幻灯片编号 128
	幻灯片编号 129
	幻灯片编号 130
	幻灯片编号 131
	幻灯片编号 132
	幻灯片编号 133
	幻灯片编号 134
	幻灯片编号 135
	幻灯片编号 136
	幻灯片编号 137
	幻灯片编号 138
	幻灯片编号 139
	幻灯片编号 140
	幻灯片编号 141
	幻灯片编号 142
	幻灯片编号 143
	幻灯片编号 144
	幻灯片编号 145
	幻灯片编号 146
	幻灯片编号 147
	幻灯片编号 148
	幻灯片编号 149
	幻灯片编号 150
	幻灯片编号 151
	幻灯片编号 152
	幻灯片编号 153
	幻灯片编号 154
	幻灯片编号 155
	幻灯片编号 156
	幻灯片编号 157
	幻灯片编号 158
	幻灯片编号 159
	幻灯片编号 160
	幻灯片编号 161
	幻灯片编号 162
	幻灯片编号 163
	幻灯片编号 164
	幻灯片编号 165
	幻灯片编号 166
	幻灯片编号 167
	幻灯片编号 168
	幻灯片编号 169
	幻灯片编号 170
	幻灯片编号 171
	幻灯片编号 172
	The X You Need To Understand in This Lecture
	感谢陪伴，期待你们的未来
	幻灯片编号 175

