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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {
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r = age;

else
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}
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r = age r = -1
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return r

Enter main
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Call foo(30)

x = Return foo

y = Return foo
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CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

• A valid sentence in language L must follow L’s grammar. 
• A context-free language is a language generated by 

a context-free grammar (CFG).

CFG is a formal grammar in which every production is of the form:
S 𝛼𝛼

where S is a single nonterminal and 𝛼𝛼 could be a string of terminals
and/or nonterminals, or empty.

• S aSb
• S 𝜀𝜀

Context-free means S could be replaced by aSb/𝜀𝜀
anywhere, regardless of where S occurs.
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CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

Partially Balanced-Parenthesis Problem via CFL
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L(realizable):

e(1eee)1e ∈ L(realizable) e(1eee)1e(2eee)1

∉ L(realizable)
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IFDS

IFDS is for interprocedural data flow analysis
with distributive flow functions over finite domains.

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95

Provide meet-over-all-realizable-paths (MRP) solution.
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for all edges (sometimes nodes) on p.

pfp = fn 。…。f2 f1。
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For each node n, MRPn provides a “meet-over-all-realizable-paths” solution
where RPaths(start, n) denotes the set of realizable paths (the path’s word is
in the language L(realizable)) from the start node to n.

MRPn ⊑ MOPn
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Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
• Each flowgraph Gp has a unique start node sp, and a unique exit node ep

• A procedure call is represented by a call node Callp, and a return-site node Retp

GpGmain
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G* has three edges for each procedure call:

GpGmain
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G* has three edges for each procedure call:
• An intraprocedural call-to-return-site edge from Callp to Retp
• An interprocedural call-to-start edge from Callp to sp of the called procedure
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G* has three edges for each procedure call:
• An intraprocedural call-to-return-site edge from Callp to Retp
• An interprocedural call-to-start edge from Callp to sp of the called procedure
• An interprocedural exit-to-return-site edge from ep of the called procedure to Retp

GpGmain

Supergraph
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Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.
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Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.

λ eparam.ebody
λ x.x+1
(λ x.x+1)3

⇒ 3+1
⇒ 4

𝑒𝑒.𝑔𝑔. ,

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}
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λ S.S-{x}

λ S.S<x/a>

S with x renamed to a

a’s fact depends on x’s
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Design Flow Functions
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“call-to-return-site” edges allow to propagate local information

S-{g} helps reduce false positives (no soundness is hurt)

Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S-{g}

λ S.S<x/a>

λ S.S

λ S.S-{a}

λ S.S-{a}

Out of local scope
Yue Li @ Nanjing University



Design Flow Functions

λ S.{x,g}

λ S.S-{x}

λ S.S

λ S.S

λ S.S-{g}

λ S.if(a∈S)or(g∈S)
then S ∪ {a}
else S - {a}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S-{g}

λ S.S<x/a>

λ S.S

λ S.S-{a}

λ S.S-{a}

Yue Li @ Nanjing University



Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#
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Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

(at most (D+1)2 edges), where D is a finite set of dataflow facts
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Why We Need Edge 0 ⟶ 0?
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n4

n3

p
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f4

In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =
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In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
<smain, 0> to <n4,a>, and the “reachability” is
retrieved by connecting the edges (finding out a
path) on the “pasted” representation relations

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =
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λ S.{a} says a holds at p regardless of input S;
however, without edge 0⟶0,

the representation relation for each edge
cannot be connected or “pasted” together,

like flow functions cannot be composed
together in traditional data flow analysis.

Thus IFDS cannot produce correct solutions via
such disconnected representation relations.

λ S.{a}
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So We Need the “Glue Edge” 0 ⟶ 0!
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Thus IFDS cannot produce correct solutions via
such disconnected representation relations.
Yue Li @ Nanjing University



Now, let’s build an exploded supergraph
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λ S.S-{g}
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λ S.if(a∈S) or(g∈S)
then S ∪ {a}
else S - {a}
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Given an exploded supergraph, we apply
Tabulation algorithm to identify MRP solutions
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Blue circles (final results) denote the nodes that
are reachable along realizable paths from <Smain,0>
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Blue circles (final results) denote the nodes that
are reachable along realizable paths from <Smain,0>

Given an exploded supergraph, we apply
Tabulation algorithm to identify MRP solutions
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Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#
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Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>

Tabulation
Algorithm
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Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>

Let n be a program point, data fact d ∈ MRPn, iff there is a realizable
path in G# from <smain, 0> to <n, d>. (then d’s white circle turns to blue)

Tabulation
Algorithm
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Tabulation Algorithm

O(ED3)
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Tabulation Algorithm

No time to cover the
whole algorithm

O(ED3)
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Tabulation Algorithm

No time to cover the
whole algorithm

But we will introduce its
core working mechanism

by a simple example

O(ED3)
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Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

……

…

……

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

……

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



…

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

……

……

……

……

……

…

Yue Li @ Nanjing University



……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

……

……

……

……

…

Yue Li @ Nanjing University



…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

……

……

……

…

Yue Li @ Nanjing University



…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

……

……

…

Yue Li @ Nanjing University



…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

……

……

…

When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).
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Actually, here a summary edge from <Call,dm> to <Ret,dn>
is added to indicate that dn is reachable from dm through the
called method p’. At the moment, some methods (like p’’)
may not be handled yet, so when handling p’’ later,
redundant work could be avoided for such reachable path.

When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).
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When a data fact (at node n) d’s circle is turned to blue,
it means that <n, d> is reachable from <Smain, 0>
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Understanding the Distributivity of IFDS
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• Can we do constant propagation using IFDS?

• Can we do pointer analysis using IFDS?

Constant propagation has infinite domain, but what if we only deal with
finite constant values? Can we still do it using IFDS?

Understanding the Distributivity of IFDS
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Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation
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one input data fact per time
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Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?
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Each flow function in IFDS handles
one input data fact per time

Each representation relation indicates
“if x exists, then …”, “if y exists then …”

But when we need “if both x and y exist”,
how to draw the representation relation?

For constant propagation, we cannot define
F if we only know x’s (or y’s) value



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation
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Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation

Regardless of the infinite domain issue, think about whether we could do
linear constant propagation, e,g., y = 2x + 3, or
copy constant propagation, e.g., x = 2, y = x, using IFDS-style analysis?

Yue Li @ Nanjing University
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Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
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Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

z and y.f should have pointed to object [new T]. However, flow function’s
input data facts lack of the alias information, alias(x,y), alias(x.f,y.f), and 
we need alias information to produce correct outputs.
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Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

z and y.f should have pointed to object [new T]. However, flow function’s
input data facts lack of the alias information, alias(x,y), alias(x.f,y.f), and 
we need alias information to produce correct outputs.

Note: If we want to obtain alias information in IFDS,
say alias(x,y), to produce correct outputs, we need
to consider multiple input data facts, x and y, which
cannot be done in standard IFDS as flow functions 
handle input facts independently (one fact per time). 
Thus pointer analysis is non-distributive.

Yue Li @ Nanjing University



1. Feasible and Realizable Paths

2. CFL-Reachability

3. Overview of IFDS

4. Supergraph and Flow Functions

5. Exploded Supergraph and Tabulation Algorithm

6. Understanding the Distributivity of IFDS

Yue Li @ Nanjing University



The X You Need To Understand in This Lecture

• Understand CFL-Reachability

• Understand the basic idea of IFDS

• Understand what problems can be solved by IFDS

Yue Li @ Nanjing University



感谢陪伴，期待你们的未来

再见
Yue Li, Tian Tan @ Nanjing University

祝同学们在新的一年有新的收获
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