
南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析



Static Program Analysis

Nanjing University

Yue Li

Fall 2020

Intermediate Representation



Conte
nts

1. Compilers and Static Analyzers

2. AST vs. IR

3. IR: Three-Address Code (3AC)

4. 3AC in Real Static Analyzer: Soot

5. Static Single Assignment (SSA)

6. Basic Blocks (BB)

7. Control Flow Graphs (CFG)

Yue Li @ Nanjing University



Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner
Tokens

Lexical Analysis
You ϡ goouojd

RegularExpression

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Parser
Tokens

AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

RegularExpression

Context-FreeGrammar

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser
Tokens

AST

Decorated
AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser

Translator

Tokens

AST

Decorated
AST

IR

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser
Tokens

AST

Decorated
AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code

Code Generator

Translator
IR

Yue Li @ Nanjing University



Machine Code

Scanner

Type Checker

Parser

Code Generator

Translator

Tokens

AST

Decorated
AST

IR

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Static Analysis

Source CodeCompiler

e.g., code optimization

Yue Li @ Nanjing University



AST vs. IR

AST

Yue Li @ Nanjing University

<



AST vs. IR

AST IR

(“3-address” form)

Yue Li @ Nanjing University

<



AST vs. IR

AST
• high-level and closed to grammar structure
• usually language dependent
• suitable for fast type checking
• lack of control flow information

IR
• low-level and closed to machine code
• usually language independent
• compact and uniform
• contains control flow information
• usually considered as the basis for static analysis

AST IR

(“3-address” form)

Yue Li @ Nanjing University

<



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t2 = a + b + 3 t1 = a + b
t2 = t1 + 3

Yue Li @ Nanjing University



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Address can be one of the following:

• Name: a, b
• Constant: 3
• Compiler-generated temporary: t1, t2

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Address can be one of the following:

• Name: a, b
• Constant: 3
• Compiler-generated temporary: t1, t2

Each type of instructions has its own 3AC form

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Yue Li @ Nanjing University



Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Let’s see some more real-world complicated forms

Yue Li @ Nanjing University



Soot and Its IR: Jimple

• Soot

Most popular static analysis framework for Java

https://github.com/Sable/soot/wiki/Tutorials
https://github.com/Sable/soot

Soot’s IR is Jimple: typed 3-address code

Yue Li @ Nanjing University

https://github.com/Sable/soot/wiki/Tutorials
https://github.com/Sable/soot


Java Src

Do-While Loop

Yue Li @ Nanjing University



Do-While Loop

3AC(jimple)

Java Src

Yue Li @ Nanjing University



Method Call

Java Src

Yue Li @ Nanjing University



Method Call

Java Src

3AC(jimple)Yue Li @ Nanjing University



Method Call

3AC(jimple)

Java Src

Yue Li @ Nanjing University



Class

Java Src

Yue Li @ Nanjing University



Java Src

3AC(jimple)

Class

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA

Optional material

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1

if e

y = x2 + 7

x0 = 0 x1 = 1

x2 = ∅(x0,x1)

- A special merge operator, (called phi-function), is introduced to
select the values at merge nodes

- has the value x0 if the control flow passes through the
true part of the conditional and the value x1 otherwise

∅

∅(x0,x1)

Yue Li @ Nanjing University



Why SSA?

Why not SSA?

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

Why not SSA?

May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

• SSA may introduce too many variables and phi-functions

• May introduce inefficiency problem when translating
to machine code (due to copy operations)

Why not SSA?

May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names
May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

• SSA may introduce too many variables and phi-functions

• May introduce inefficiency problem when translating
to machine code (due to copy operations)

Why not SSA?

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Basic Blocks (BB)

• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that

a = q

if p == q goto B6

b = x + a
c = 2a - b

Yue Li @ Nanjing University



• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX 

Basic Blocks (BB)

Yue Li @ Nanjing University



• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

- It can be exited only at the end, i.e., the last instruction
in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Basic Blocks (BB)

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



How to build Basic Blocks?

INPUT: A sequence of three-address instructions of P
OUTPUT: A list of basic blocks of P

METHOD: (1) Determine the leaders in P
• The first instruction in P is a leader
• Any target instruction of a conditional or
unconditional jump is a leader

• Any instruction that immediately follows a
conditional or unconditional jump is a leader

(2) Build BBs for P
• A BB consists of a leader and all its subsequent
instructions until the next leader

Yue Li @ Nanjing University



How to build Basic Blocks?

INPUT: A sequence of three-address instructions of P
OUTPUT: A list of basic blocks of P

METHOD: (1) Determine the leaders in P
• The first instruction in P is a leader
• Any target instruction of a conditional or
unconditional jump is a leader

• Any instruction that immediately follows a
conditional or unconditional jump is a leader

(2) Build BBs for P
• A BB consists of a leader and all its subsequent
instructions until the next leader

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• The first instruction in P is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• The first instruction in P is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• Any target instruction of a conditional
or unconditional jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• Any target instruction of a conditional
or unconditional jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• (3),(7),(12)

• Any instruction that immediately
follows a conditional or unconditional
jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• (3),(7),(12)

• Any instruction that immediately
follows a conditional or unconditional
jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

Leaders: (1), (3),
(5), (7), (11), (12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

Leaders: (1), (3),
(5), (7), (11), (12)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

• B1 {(1)}
• B2 {(3)}
• B3 {(5)}
• B4 {(7)}
• B5 {(11)}
• B6 {(12)}

Leaders: (1), (3),
(5), (7), (11), (12)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

Leaders: (1), (3),
(5), (7), (11), (12)

• B1 {(1),(2)}
• B2 {(3),(4)}
• B3 {(5),(6)}
• B4 {(7),(8),(9),(10)}
• B5 {(11)}
• B6 {(12)}

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

• B1 {(1),(2)}
• B2 {(3),(4)}
• B3 {(5),(6)}
• B4 {(7),(8),(9),(10)}
• B5 {(11)}
• B6 {(12)}

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
How to build CFG on

top of BBs?

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

… …A
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

… …A
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions

goto (i)
… …

A (j)

B … …
X 

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump

goto (i)
… …

A (j)

B … …
X 

Yue Li @ Nanjing University



Control Flow Graph (CFG)

• It is normal to replace the jumps to instruction labels by
jumps to basic blocks

goto (i)
… …

A

(i)

(j)

B … …

goto B
… …

A

B … …

In case of possibly frequent
instruction-level changes

• The nodes of CFG are basic blocks
• There is an edge from block A to block B if and only if

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

(11) goto (3)

(12) return

B1

B2

B3

B4

B5

B6

if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

Exit

Entry

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6
Exit

Entry

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: CFG of P

Yue Li @ Nanjing University



Summ
ary

1. Compilers and Static Analyzers

2. AST vs. IR

3. IR: Three-Address Code (3AC)

4. 3AC in Real Static Analyzer: Soot

5. Static Single Assignment (SSA)

6. Basic Blocks (BB)

7. Control Flow Graphs (CFG)

Yue Li @ Nanjing University



TheX You Need To Understand in This Lecture

• The relation between compilers and static analyzers

• Understand 3AC and its common forms (in IR jimple)

• How to build basic blocks on top of IR

• How to construct control flow graphs on top of BBs?

Yue Li @ Nanjing University


