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AST vs. IR

AST
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AST vs. IR

AST IR

(“3-address” form)
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AST vs. IR

AST
• high-level and closed to grammar structure
• usually language dependent
• suitable for fast type checking
• lack of control flow information

IR
• low-level and closed to machine code
• usually language independent
• compact and uniform
• contains control flow information
• usually considered as the basis for static analysis

AST IR

(“3-address” form)

Yue Li @ Nanjing University
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Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t2 = a + b + 3 t1 = a + b
t2 = t1 + 3
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Why called 3-address?
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Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Address can be one of the following:

• Name: a, b
• Constant: 3
• Compiler-generated temporary: t1, t2

Each type of instructions has its own 3AC form

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University
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Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Yue Li @ Nanjing University



Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Let’s see some more real-world complicated forms
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Soot and Its IR: Jimple

• Soot

Most popular static analysis framework for Java

https://github.com/Sable/soot/wiki/Tutorials
https://github.com/Sable/soot

Soot’s IR is Jimple: typed 3-address code

Yue Li @ Nanjing University
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Java Src

Do-While Loop
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Do-While Loop

3AC(jimple)

Java Src
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Method Call

Java Src
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Class
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Static Single Assignment (SSA)

• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA

Optional material
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• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA
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Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1
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Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1

if e

y = x2 + 7

x0 = 0 x1 = 1

x2 = ∅(x0,x1)

- A special merge operator, (called phi-function), is introduced to
select the values at merge nodes

- has the value x0 if the control flow passes through the
true part of the conditional and the value x1 otherwise

∅

∅(x0,x1)

Yue Li @ Nanjing University



Why SSA?

Why not SSA?

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

Why not SSA?

May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

Yue Li @ Nanjing University
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Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
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Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)

Input: 3AC of P

Output: CFG of P
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Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)
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Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)

Input: 3AC of P

Output: CFG of P
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Basic Blocks (BB)

• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that

a = q

if p == q goto B6

b = x + a
c = 2a - b

Yue Li @ Nanjing University



• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX 

Basic Blocks (BB)
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• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

- It can be exited only at the end, i.e., the last instruction
in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Basic Blocks (BB)

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build BBs

by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 
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How to build Basic Blocks?

INPUT: A sequence of three-address instructions of P
OUTPUT: A list of basic blocks of P

METHOD: (1) Determine the leaders in P
• The first instruction in P is a leader
• Any target instruction of a conditional or
unconditional jump is a leader

• Any instruction that immediately follows a
conditional or unconditional jump is a leader

(2) Build BBs for P
• A BB consists of a leader and all its subsequent
instructions until the next leader

Yue Li @ Nanjing University
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(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
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(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
How to build CFG on

top of BBs?
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• The nodes of CFG are basic blocks

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if
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• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …
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• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if
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(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …
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• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if
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A
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goto (i)
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(j)

B … …

if e goto (i)A (j)
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… …
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• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

… …A
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
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• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions

goto (i)
… …

A (j)

B … …
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• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump

goto (i)
… …

A (j)

B … …
X 
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Control Flow Graph (CFG)

• It is normal to replace the jumps to instruction labels by
jumps to basic blocks

goto (i)
… …

A

(i)

(j)

B … …

goto B
… …

A

B … …

In case of possibly frequent
instruction-level changes

• The nodes of CFG are basic blocks
• There is an edge from block A to block B if and only if

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump
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(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

(11) goto (3)

(12) return

B1

B2

B3

B4

B5

B6

if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

Add edges in CFG
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Add edges in CFG
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

Exit

Entry

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump
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if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6
Exit

Entry

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: CFG of P
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Summ
ary

1. Compilers and Static Analyzers

2. AST vs. IR

3. IR: Three-Address Code (3AC)

4. 3AC in Real Static Analyzer: Soot

5. Static Single Assignment (SSA)

6. Basic Blocks (BB)

7. Control Flow Graphs (CFG)
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TheX You Need To Understand in This Lecture

• The relation between compilers and static analyzers

• Understand 3AC and its common forms (in IR jimple)

• How to build basic blocks on top of IR

• How to construct control flow graphs on top of BBs?
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