Static Program Analysis

Data Flow Analysis — Foundations

Nanjing University
Yue Li

2020

0 OWEE)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice
5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

/. Relate Iterative Algorithm to Fixed Point Theorem
8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Let us first recall the iterative algorithm
for data flow analysis

This general iterative algorithm produces
a solution to data flow analysis

Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killg and geng computed for each basic block B)
OUTPUT: IN[B] and OUTIB] for each basic block B

METHOD:

OUTl[entry] = ©;
for (each basic block Blentry)

OUT[B] = ¢;
while (changes to any OUT occur)
for (each basic block Blentry) {

IN[B] = UPapredecessor of B OUT[P];
OUT[B] = geng U (IN[B] - killg);

View lterative Algorithm in Another Way

 Given a CFG (program) with k nodes, the iterative algorithm
updates OUT][n] for every node n in each iteration.

View lterative Algorithm in Another Way

 Given a CFG (program) with k nodes, the iterative algorithm
updates OUT][n] for every node n in each iteration.

« Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

(OUT[n,], OUT[n,], ..., OUT[n,])

as an element of set (V, x V, ... X V,) denoted as V¥,
to hold the values of the analysis after each iteration.

View lterative Algorithm in Another Way

Given a CFG (program) with k nodes, the iterative algorithm
updates OUT][n] for every node n in each iteration.

Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

(OUT[n,], OUT[n,], ..., OUT[n,])

as an element of set (V, x V, ... X V,) denoted as V¥,
to hold the values of the analysis after each iteration.

Each iteration can be considered as taking an action to map
an element of Vk to a new element of V¥, through applying
the transfer functions and control-flow handing, abstracted
as a function F: Vk — Vk

View lterative Algorithm in Another Way

 Given a CFG (program) with k nodes, the iterative algorithm
updates OUT][n] for every node n in each iteration.

« Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

(OUT[n,], OUT[n,], ..., OUT[n,])

as an element of set (V, x V, ... X V,) denoted as V¥,
to hold the values of the analysis after each iteration.

« Each iteration can be considered as taking an action to map
an element of Vk to a new element of V¥, through applying

the transfer functions and control-flow handing, abstracted
as a function F: Vk - V&

« Then the algorithm outputs a series of k-tuples iteratively
until a k-tuple is the same as the last one in two consecutive
iterations

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUTIB] = ¢; updates OUT]n] for every node
while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {
IN[B] = UPapredeoessorof B OUT[P];

OUTI[B] = geng U (IN[B] - Killg);
}

init ‘(J_, 4, ..., J_)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT[B] = @; updates OUT]n] for every node
while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

IN[B] = UPapredeoessorof B OUTIF];
OUT(B] = geng U (IN[B] - killg);
}

init ‘(J—, J—a cecy J—)
iter 1 ‘(v%,v%,---avé)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT[B] = @; updates OUT]n] for every node
while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

IN[B] = UPapredeoessorof B OUTIF];
OUT[B] = geng U (IN[B] - Killg);
}

init ‘(J—, J—a cecy J—)
iter 1 —»(vll,v%,...,vi)
iter 2 —»(Ulz,vzz,...,vi)

Yue Li @ Nanjing University

OUTlentry] = @;
for (each basic block Blentry)
OUTIB] = 9;

IN[B] =

}

UP a predecessor of B
OUTI[B] = geng U (IN[B] - Killg);

Given a CFG (program) with k
nodes, the iterative algorithm

updates OUT]n] for every node

while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

OUTIP];

init ‘(J_, 1, ...

iter 1w (V1, V5,
iter 2 ‘(Ulz,vzz,

iter i =) (Ui, vé ,

, 1)
VR
o VE)

s UR)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUTIB] = ¢; updates OUT]n] for every node
while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {
IN[B] = UPapredeoessorof B OUT[P];

OUT[B] = geng U (IN[B] - killg);
}

init ‘(J—, J—a cecy J—)
iter 1 —»(vll,v%,...,vzi)
iter 2 —»(Ulz,vzz,...,vi)

iteri. == (p;,V5,...,Vy)
iter i+1 == (v}, vl ..., VL)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT[B] = @; updates OUT]n] for every node
while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

IN[B] = UPapnsdeoessorof B OUTIF];
OUTI[B] = geng U (IN[B] - Killg);
}

init ‘(J_, 4, ..., J_) =Xy
er 1w (0, D2 0b) = X
iter 2 —b(vlz,vzz,,_.,v%):Xz

iteri. == (p;,v5,...,0) =X,
iter i+1 (v1,V5,...,V5) =X

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT([B] = 9; updates OUT]n] for every node

while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

L1 S0 PN e U1 S B Eoch iteration takes an action
OUTIB] = gens U (INB] - kil F: VE o Vk

}

lnlt ‘(J_, J_, ooy J_) :XO
iter 1 —»(vll,v%,...,v,%) = X; = F(Xp)
iter 2 —’(Ulz,vzz,...,vi):XzzF(Xz)

iter i == (pt vl ... vil) =X, = F(X,,)
iter i+1 == (v} vi ... vi) =X, = F(X)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT([B] = 9; updates OUT]n] for every node

while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

L1 S0 PN e U1 S B Eoch iteration takes an action
OUTIB] = gens U (IN[B] - kill); F: VK o VK

}

lnlt ‘(J_, J_, ooy J_) :XO
iter 1 —»(vll,v%,...,v,i) = X; = F(Xp)
iter 2 —’(Ulz,vzz,...,vi):XzzF(Xz)

iter 1 ﬂ(v{,vé, ...,U,i{) =X; = F(X;)
iter i+1 == (v} vi .. vl) =X, = F(X)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT([B] = 9; updates OUT]n] for every node

while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

L1 S0 PN e U1 S B Eoch iteration takes an action
OUTIB] = gens U (INB] - kil F: VE o Vk

}

lnlt ‘(J_, J_, ooy J_) :XO
iter 1 —»(vll,v%,...,v,%) = X; = F(Xp)
iter 2 —’(Ulz,vzz,...,vi):XzzF(Xz)

iteri == (pl vl . VL) =X, =F(X,) X=X,
iter i+1 (Ui , Ué s ey U]lc) =X =FX) Xi= X = F(X3)

Yue Li @ Nanjing University

OUTlentry] = Given a CFG (program) with k

for (each basic block Blentry) nodes, the iterative algorithm
OUT([B] = 9; updates OUT]n] for every node

while (changes to any OUT occur) n in each iteration.
for (each basic block Blentry) {

L1 S0 PN e U1 S B Eoch iteration takes an action
OUTIB] = gens U (IN[B] - kill); F: VK o VK

}

init ‘(J_, 4, ..., J_) = X,

: 1 .,1 1y _
z.ter [, v2,....7) = X is a fixed point of function F if
iter 2 ‘(Ulz,vzz,”.,v’%): X = F(X)

iteri == (pl vl . VL) =X, =F(X,) X=X,
iter i+1 (Ui , Ué s ey U]l{) =X =FX) Xi= X = F(X3)

Yue Li @ Nanjing University

OUT][entry] =

for (each basic block Blentry)
OUT[B] =

while (changes to any OUT occur)
for (each basic block Blentry) {

IN[B] = UPapredeoessorof B OUTIF];
OUTIB] = geng U (IN[B] - Killg);

}

init =y (L, 1,

iter I —»(vll,v%, vk)
iter 2 —;(Ulz,vzz,._.,vk)_
iter i —D(Ui,vé,.“

iter i+1 == (v} v ... vl

Given a CFG (program) with k

nodes, the iterative algorithm
updates OUT]n] for every node

n in each iteration.

Each iteration takes an action
F: Vk - Vk

, 1) =X

X is a fixed pomt of function F if
= F(X)

The iterative algorithm reaches

a fixed point

= F(X;) - X=X = F(Xi)

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

* |s the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

* |s the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

« |f so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

When will the algorithm reach the fixed point, or when can
we get the solution?

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

When will the algorithm reach the fixed point, or when can
we get the solution?

To answer these questions, let us learn some math first

Yue Li @ Nanjing University

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

(1) Reflexivity 1<1,2<2
(
(

2) Antisymmetry
3) Transitivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

\/(1)Reﬂexivity 1<1,2<2
(2) Antisymmetry
(3) Transitivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

< (1) Reflexivity ~1<1,2<2
(2) Antisymmetry x <y Ay < xthenx=y
(3) Transitivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

\/(1)Reﬂexivity 1<1,2<2
\/ (2) Antisymmetry x <y Ay < xthenx=y
(3) Transitivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

\/(1)Reﬂexivity 1<1,2<2

\/ (2) Antisymmetry x < YAy <Xxthenx=y
(3) Transitivity 1<2A2<3then1<3

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

\/(1)Reﬂexivity 1<1,2<2
\/ (2) Antisymmetry x <y Ay < xthenx=y
\/(3) Transitivity 1<2A2<3then1<3

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 2. Is (S, E) a poset where S is a set of integers
and C represents < (less than)?

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 2. Is (S, E) a poset where S is a set of integers
and C represents < (less than)?

(1) Reflexivity

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 2. Is (S, E) a poset where S is a set of integers
and C represents < (less than)?

(1) Reflexivity 1<1,2<2

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 2. Is (S, E) a poset where S is a set of integers
and C represents < (less than)?

x (1) Reflexivity 1<1,2<2

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 3. Is (S, E) a poset where S is a set of English words
and C represents the substring relation, i.e., s1 E s2 means s1
IS a substring of s2?

singing
N
pin sin sing gin
T~

N

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 3. Is (S, E) a poset where S is a set of English words
and C represents the substring relation, i.e., s1 E s2 means s1
IS a substring of s2?

singing
(1) Reflexivity pd \\
(2) Antisymmetry pin sin sing gin
(3) Transitivity \\\v/

N

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 3. Is (S, E) a poset where S is a set of English words
and C represents the substring relation, i.e., s1 E s2 means s1
IS a substring of s2?

singing

v (1) Reflexivity pd \\
(2) Antisymmetry pin sin sing gin

(3) Transitivity \\\v/

N

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 3. Is (S, E) a poset where S is a set of English words
and C represents the substring relation, i.e., s1 E s2 means s1
IS a substring of s2?

singing

v (1) Reflexivity pd \\
\/(Z)Antisymmetry pin sin sing gin
(3) Transitivity \\\v/

N

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 3. Is (S, E) a poset where S is a set of English words
and C represents the substring relation, i.e., s1 E s2 means s1
IS a substring of s2?

singing
v (1) Reflexivity pd \
\/(Z)Antisymmetry pin sin sing gin
\/ (3) Transitivity \\v/

N

Partial Order

We define poset as a pair (P, E) where C is a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,zEP,XEyAyEz=>xEz (Transitivity)

partial means for a pair of set elements in P, they could be

Incomparable; in other words, not necessary that every pair
of set elements must satisfy the ordering C

singing
\/ (1) Reflexivity v \
V(Z)Antisymmetry pin sin sing gin
V (3) Transitivity \\v/

iN

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)? (ab.c)
a,b,c

LN
{a,b} {a,c} {b,c}
1o>< ><l
{a} {b} {c}
\{l}/

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
(1) Reflexivity { bﬁ \Lh\b \
, d, d,C ,C
(2) Antzsy.rr.miletry o< 5< |
(3) Transitivity {a} {b} {c}
N

{}

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
v (1) Reflexivity N
(2) Antisymmetry {a,b} {a,c} {b,c}
(3) Transitivity @y (b} {ch
N

{}

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
\/ (1) Reflexivity { bﬁ \L}\b }
\/ (2) Antisymmetry ai ><3,C>< lC
(3) Transitivity @y (b} {ch
NV 7

{}

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
V (1) Reflexivity e I
 (2) Antisymmetry {ail%’%lc}
\/ (3) Transitivity @y (b} {ch
NV 7

{}

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,zEP,XEyAyEz=>xEz (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
V (1) Reflexivity N
N/ (2) Antisymmetry {ai%’%ic}
\/ (3) Transitivity @) {b} o)

partial =» mcomparable {}/

Yue Li @ Nanjing Uni

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

{abc; P
P AN
{a,b} {a,c} {b,c}
1>< ><|
{a} S {b} {c}
\{l}/

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

Upper boundIEERFE
P AN

{a,b} {a,c} {b,c}

1>< >l

{a} S {b} {c}
\{l}/

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

Upper boundEESEYNEES
LN

{a,b} {a,c} {b,c}

o< ><!

{a} S b} {c}
~ {l} e

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,
if for every upper bound of S, say u, US E u. Similarly,

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

{abc} P
LN

{a,b} {a,c} {b,c}

a} S {b} {c}
~ {l} e

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

D,
upper boun AN
{a,b} {a,c} {b,c}
o< <
{a} § by {c}
\{l}/

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,
if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

b
upper boun AN

T @9 bo
1< ><)
{a}s {b} {c}

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,
if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

_ —>{a,b,c}; P
upper bound SN
EESANIE —>{a,b} {a,c} {b.c}

1> <l
(a) 1S {b} {c}

Yue Li @ Nanjing Uni

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

B —>{a,b,c}; P
upper bound AN
EERIIENN —>{a,b} {a,c} {b,c}
l><l
lower bound {a}\s\{l} /{C}
)

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

Usually, if S contains only two elements a and b (S = {a, b}), then
LIS can be written a LI b (the join of a and b)
S can be written a M b (the meet of a and b)

Some Properties

* Not every poset has /ub or glb

Some Properties

Not every poset has /ub or glb

Some Properties

Not every poset has /ub or glb

Some Properties

 Not every poset has /ub or glb 1,

« Butif a poset has lub or glb, it will be unique

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P
according to the definition of glb

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P
according to the definition of glb
g1 E (g, =MP) and g, E (g, = NP)

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P
according to the definition of glb
g1 E (g, =MP) and g, E (g, = NP)
by the antisymmetry of partial order &

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P
according to the definition of glb
g1 E (g, =MP) and g, E (g, = NP)
by the antisymmetry of partial order &

g1 = &2

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 1. Is (S, E) a lattice where S is a set of integers
and C represents < (less than or equal to)?

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 1. Is (S, E) a lattice where S is a set of integers
and C represents < (less than or equal to)?

\/The LI operator means “max”
and N operator means “min”

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 2. Is (S, £) a lattice where S is a set of
English words and E represents the substring
relation, i.e., s1 E s2 means s1 is a substring of s27?

singing

<IN

pin sin sing gin

\\v/

iN

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 2. Is (S, £) a lattice where S is a set of
English words and E represents the substring
relation, i.e., s1 E s2 means s1 is a substring of s27?

¥ pin U sin="7? singing
N
pin sin sing gin

\\v/

iN

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 3. Is (S, E) a lattice where S is the power
set of set {a,b,c} and C represents € (subset)?

{a,b,c}

LN
{a,b} {a,c} {b,c}
1o>< ><l
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 3. Is (S, E) a lattice where S is the power
set of set {a,b,c} and C represents € (subset)?

{a,b,c}

\/The LI operator means U /l\

and M operator means N {a,b} {a,c} {b,c}

o< ><
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Semilattice

Given a poset (P,E), Va,b €P,
if only a U b exists, then (P,) 1s called a join semilattice

if only a M b exists, then (P, E) is called a meet semilattice

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, E) 1s called a complete lattice

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 1. Is (S, £) a complete lattice where S is a set
of integers and C represents < (less than or equal to)?

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 1. Is (S, £) a complete lattice where S is a set
of integers and C represents < (less than or equal to)?

x For a subset S* including all positive integers,
it has no LUS* (4+0)

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 2. Is (S, £) a complete lattice where S is the
power set of set {a,b,c} and E represents < (subset)?

{a,b,c}

LN
{a,b} {a,c} {b,c}
1o>< ><l
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 2. Is (S, £) a complete lattice where S is the
power set of set {a,b,c} and E represents < (subset)?

{a,b,c}
Note: the definition of bounds
Implies that the bounds are not b/l\b
necessarily in the subsets (but &0} {a.c} {b.c}

they must be in the lattice) | ><< ><
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Every complete lattice (P, £) has } ,i,i\

a greatest element T = LIP called top and {a,b} {ac} {b,c}

{a} {b} {c}
~ {l} /

aleast element 1L = MNP called bottom

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Every complete lattice (P, E) has
a greatest element T = LP called top and
aleast element L = MP called bottom

Every finite lattice (P is finite) is a

complete lattice

Yue Li @ Nanjing University

{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
~ {l} /

Complete Lattice NN AEEEERNCEERTIERETEE

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Every complete lattice (P, E) has
a greatest element T = LP called top and
aleast element L = MP called bottom

Every finite lattice (P is finite) is a

complete lattice

Yue Li @ Nanjing University

{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
~ {l} /

Product Lattice

Given lattices L, = (P, E)),L,=(P,,5,), ...,L,=(P,, E,), 1f for all 1,
(P;, E,) has L, (least upper bound) and M, (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

Product Lattice

Given lattices L, = (P,,E)),L,=(P,,5,),...,.L,=(P,, E,), 1f for all 1,
(P;, E,) has L, (least upper bound) and M, (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

Product Lattice

Given lattices L, = (P,,E)),L,=(P,,5,),...,.L,=(P,, E,), 1f for all 1,
(P;, E,) has L, (least upper bound) and M, (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

y (X17 "°7Xn) - (YD "'7Yn) & (Xl C YI)/\ /\(XnE Yn)

Product Lattice

Given lattices L, = (P,,E)),L,=(P,,5,),...,.L,=(P,, E,), 1f for all 1,
(P;, E,) has L, (least upper bound) and M, (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

* XS X)EGL YD) S K EYDA LA E Y

* Xy X)) U (Yo ¥n) = (XU Y, - Xy Uy)

Product Lattice

Given lattices L, = (P,,E)),L,=(P,,5,),...,.L,=(P,, E,), 1f for all 1,
(P;, E,) has L, (least upper bound) and M, (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

* X s X)EWL LS K EY)A LA EYY

* Xy X)) U (Yo ¥n) = (XU Y, - Xy Uy)

* X X) YL Yn) = KM yn e X, My Ya)

Product Lattice

Given lattices L, = (P,,&E,),L,=(P,,E,), ...,L,=(P,, E,), if for all 1,
(P;, £, has U; (least upper bound) and M; (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

* X X)) EGL YD) K EY)ALAXKEY,

¢ X s X)) U (YY) = XU Y, s X Uy)

* X s X) MY Yn) = KMy, s X My Yo

« A product lattice is a lattice

 If a product lattice L is a product of
complete lattices, then L is also complete

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:
 D: adirection of data flow: forwards or backwards

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

 D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

sl s3 T{a,b,C}
@ﬂﬁ! m <IN
\/LI=L\J/ {a,b} {a,c} {b,c}
2 o< o<l
” {a} {b} {c}
l N7

1 {}

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

S S T{a,b,C}
T e 1N
(al \UL/ (b} (ab} {ac} {b.c)
> {i}><{b}><{i}
l Nl

1 {}

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

sl T{a,b,C}
N
(al \u / {b} (ab} {a.ch {b.c)
2 @ o
[N

1 {}

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

sl T{a’b’C}
N
(al \u / {b} (ab} {ac} {b.c)
1 fab) o< ><
2 S ulr S
l {a,b,c} N

1 {}

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

T{a,b,c}

sl
LN
(a) \u / {b} (ab} {ac) {b,c}

| {a.b} o< o<
> (@} (B} {c}
| HE] (2.5, \{L}/
1

Data flow analysis can be seen as iteratively applying transfer

functions and meet/join operations on the values of a lattice

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

When will the algorithm reach the fixed point, or when can
we get the solution?

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

-r? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

* If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Review The Questions We Have Seen Before

* point, or does it always have a solution?

* If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
* more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
* more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing Universit

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., <L) until a fixed point is reached

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., <L) until a fixed point is reached
the greatest fixed point of can be found by iterating
f(T), f(f(T)), ..., (T) until a fixed point is reached

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L1)), ..., (L) until a fixed point is reached
the greatest fixcdsaht of f can be found by iterating

(T) until a fixed point is reached

(1) Existence of fixed point

(2) The fixed point is the least

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of L and f: L - L, we have
1 EAf(L)

Fixed-Point Theorem (Existence of Fixed Point)

Proof:

By the definition of L and f: L - L, we have
1 Ef(l)

As f 1S monotonic, we have

f(1) E f(f(L)) = f*(1)

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of L and f: L - L, we have
1 Ef(l)
As f 1S monotonic, we have
f(1) E f(f(L1)) = (1)
Similarly (by repeatedly applying f), we have
LCf(LHEfA(L)E ... Sfi(l)

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of L and f: L - L, we have
1 Ef(L)
As f 1S monotonic, we have
f(L) & f(f(L)) = (L)
Similarly (by repeatedly applying f), we have
LIEf(LHERA(LE ...Ef(L)
As L 1s finite (and f 1s monotonic), for some k, we have
fFix — fk(J_) — fk+1(J_)

Thus, the fixed point exists.

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x

Fixed-Point Theorem (Least Fixed Point)

Proof:

Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x

Induction begins:

Fixed-Point Theorem (Least Fixed Point)

Proof:

Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x

Induction begins:

As f 1S monotonic, we have

f(1) C f(x)

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have
f(L) E {(x)
Assume f'(1) E fi(x), as f is monotonic, we have
fi+1(J_) - fi"'l(X)

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have
f(L) E {(x)
Assume f'(1) E fi(x), as f is monotonic, we have
fi+1(J_) - fi"'l(X)
Thus by induction, we have
fi(L) E fi(x)

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have
f(L) E {(x)
Assume f'(1) E fi(x), as f is monotonic, we have
fi+1(J_) - fi"'l(X)
Thus by induction, we have
fi(L) E fi(x)
Thus fi(1) E fi(x) = x, then we have
ffix = fk(1) E x
Thus the fixed point is the least

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have
f(L) E {(x)
Assume f'(1) E fi(x), as f is monotonic, we have
fi+1(J_) - fi+1(X)
Thus by induction, we have
fi(L) E fi(x)
Thus fi(1) E fi(x) = x, then we have
ffix = fk(1) E x
Thus the fixed point is the least

Yue Li @ Nanjing University

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L — L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., <L) until a fixed point is reached
the greatest fixed point of can be found by iterating
f(T), f(f(T)), ..., (T) until a fixed point is reached

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

-r? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

r? If so, is there onIy one solution or only one fixed point? If
* more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

.f? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

f? If so, is there onIy one solution or only one fixed point? If
* more than one, is our solution the best one (mg

« When will the algorithm reach the fixed |
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

.f? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
®* more than one, is our solution the best one (mg

« When will the algorithm reach the fixed |
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our

iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem

- (L, L, ..., 1)

iter 1 == (V1,v3,..., V%)

iter 2w (V2 V2, ..., VE)

iter i —v(vi,vé, ...,U,lc)

iter i+1 -~ (v}, v5,...,VU)

\

Given a complete lattice (L,), if
(1) f: L = L is monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., (L) until a fixed point is reached
the greatest fixed point of f can be found by iterating
f(T), f(f(T)), ..., fXT) until a fixed point is reached

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem
(L! L_, LRy L) If a product lattice L¥ is a product of complete

(and finite) lattices, i.e., (L, L, ..., L), then LX
Is also complete (and finite)

- (L, L, ..., L)
iter I == (V1,03 ..., Vi)

iter 2 —»(vlz,viz,---,vﬁ)

iteri == (vi,v5,...,V)

iter i+1 -~ (v§,v5,...,V})

\

Given a complete lattice (L,), if
(1) f: L - L is monotonic and|(2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., fX(L) until a fixed point is reached
the greatest fixed point of f can be found by iterating
f(T), f(f(T)), ..., fXT) until a fixed point is reached

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem

(L, L_, X L) If a product lattice L¥ is a product of complete
RSN (and finite) lattices, i.e., (L, L, ..., L), then Lk

- (L, L, .., 1) is also complete (and finite)

iter I == (v1,v3,..., V%)

iter 2w (V2 V2, ..., VF)

In each iteration, it is equivalent to think that
we apply function F which consists of

iter i -(Vi,vé, ---,U:‘:c) (1) transfer function f: L - L for every node
AN CHC RN YN (2) join/meet function LI /M: LXL — L for

\

control-flow confluence

Given a complete lattice (L, E), if
(1) f: L - L is monotonic|and|(2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., (L) until a fixed point is reached
the greatest fixed point of f can be found by iterating
f(T), f(f(T)), ..., fXT) until a fixed point is reached

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem

(L, L_, ey L) If a product lattice L¥ is a product of complete
RSN (and finite) lattices, i.e., (L, L, ..., L), then Lk
is also complete (and finite)

- (L, L, ..., L)
iter I == (V1,03 ..., Vi)

ter2 = (vi,v3, LM | cach iteration, it is equivalent to think that

L O ; we apply function F which consists of
LA GO NN (1) transfer function f: L — L for every node

iter i+1 - (v}, v5, ..., v}) (2) join/meet function L /M: LxL — L for

\

control-flow confluence

Given a complete lattice (L, E), if

(1) f: L - L is monotonic|and|(2) L is finite, }.hen

the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., (L) until

the greatest fixed point of f can b
f(T), f(f(T)), ..., £X(T) until ¥

Now the remaining issue is to
prove that fqnc;tion F is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F

which consists of
(1) transfer function f: L - L for every node

(2) join/meet function LI /1: LxL — L for control-flow confluence

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function f: L - L for every node

(2) join/meet function LI /M: LXL - L for\:ontrol-flow confluence
WV

Gen/Kill function is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F

which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F

which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\pontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F

which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\pontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F

which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z

by transitivity of E,x E y Ll z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z
by transitivity of E,x E y Ll z
thus y Ll z 1s an upper bound for x, and also for z (by U’s definition)

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z
by transitivity of E,x E y Ll z
thus y Ll z 1s an upper bound for x, and also for z (by U’s definition)

as x U z 1s the least upper bound of x and z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function f;: L - %&Severy node

L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z

by transitivity of E,x E y Ll z

thus y Ll z 1s an upper bound for x, and also for z (by U’s definition)
as x U z 1s the least upper bound of x and z

thusxUzEyUz

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\pontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z
by transitivity of £, x T _
thus y U z 1s an uppagq = aeg ithm 10 W 0 s definition)
as X U z 1s the least
thusx UzEyUz

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

.f? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

f? If so, is there only one solution or only one flxed point?
* more than one, is our solution the best one & eatest OF.

* When will the algorithm reach the fixed point, or when can
we get the solution?

Now what we have just seen is the property (fixed point

/N1 1.~

theorem) for the function on a lattice. ‘v"v’c car‘.r‘.ct Say Cui

uv UE vvuuv ILII 11 GAIWVW 1 1GAW LI
V\f\f\f\lb\lf\

relate the algorithm to the flxed pomt theorem, e

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

YES

\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\y If so, rs-there—entﬂyheﬁe-eehﬂen-eﬁeﬁtﬂrehe-teeed-pﬁﬁt?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. VW'c cannct say cur

LV uuvvuvv ILII 11 GVAIWVW 11GAW LI IuUAL rlvrlv]u

relate the algorithm to the fixed point theorem ———————

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

YES

\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\y If so, rs-there—entﬂyheﬁe-eehﬂen-eﬁeﬁtﬂrehe-teeed-pﬁﬁt?

When will the algorithm reach the fixed point, or when can
* we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. VW'c cannct say cur

LV uuvvuvv ILII 11 GVAIWVW 11GAW LI IuUAL rlvrlv]u

relate the algorithm to the fixed point theorem ———————

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

When Will the Algorithm Reach the Fixed Point?

The height of a lattice 4 1s the length of the T (a.b.ch
longest path from Top to Bottom 1n the lattice. /’ l’\

{a,b} {a,c} {b,c}
1>< >\
{a} {b} {c}
N

1 {}

When Will the Algorithm Reach the Fixed Point?

The height of a lattice /4 1s the length of the h=3
X : T{ab.c)

longest path from Top to Bottom 1n the lattice.
e N
{a,b} {a,c} {b,c}
< ><|
{a} {b} {c}
NV 7
1L {}

When Will the Algorithm Reach the Fixed Point?

The height of a lattice 4 1s the length of the h=3
longest path from Top to Bottom in the lattice. E’i,{\

{a,b} {a,c} {b,c}

The maximum iterations 1
needed to reach the fixed point {i}><{b}><{i/}
~N
- (L, L, ..., 1) L {}

iter 1 —»(vll,v%, ...,v,%)
iter 2 ‘(Ulz,vzz,“.,v%)

iter i —i(Ui,vé, “.,v;{)
iter i+1 (Ui,vé, “.,v;()

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

The height of a lattice 4 1s the length of the h=73
longest path from Top to Bottom in the lattice. j}’i’i

{a,b} {a,c} {b,c}

The maximum iterations 1
needed to reach the fixed point {i}><{b}><{i,}
~N
- (L, L, ..., 1) L {}

. 1 1
iter 1 ===y (V7. V5,....0 : :
(1>%2> B " cach iteration, assume only one step

iter 2w (Ulz , vzz S e, U,%) in the lattice (upwards or downwards) is
_ made in one node (e.g., one 0->1 in RD)

iter i = (pL vi ... vi

iter i+1 == (v{, V5, ...,V

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

The height of a lattice 4 1s the length of the h=73
longest path from Top to Bottom in the lattice. j}’i’i

{a,b} {a,c} {b,c}
The maximum iterations [l,x ><J,

needed to reach the fixed point {a} {b} {c}
— (L L . D) ThH

iter | == (V{,V3, ..., Vi

. In each iteration, assume only one step
iter 2 wup (Ulz , 1722 S e, U,%) in the lattice (upwards or downwards) is
_ made in one node (e.g., one 0->1 in RD)

_ : _ Bl Assume the lattice height is /2 and the
iter | (Ui] vé e, v;{) number of nodes in CFG is k
iter i+1 (V1,V5, ..., VE)

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

The height of a lattice /4 1s the length of the h=73
X : T{ab.c)

longest path from Top to Bottom in the lattice. / l/ \
{a,b} {a,c} {b,c}

The maximum iterations [l,x ><l,

needed to reach the fixed point {a} {b} {c}
— (L L . D) ThH

iter 1 = (p1 vl .. vl : :

. (ISR S A2 |h cach iteration, assume only one step

iter 2w (Ulz , 1722 S e, U,%) in the lattice (upwards or downwards) is
_ made in one node (e.g., one 0->1 in RD)

_ : _ B Assume the lattice height is / and the
iter | (Ui] vé e, v;{) number of nodes in CFG is k

iter i+1 (Ui : Ué e, v;() We need at most i = /h*k iterations

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis
YES

\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\/ If so, mﬂﬁ%ﬁt’? If

more than one, is our solution the best one (most precise)?

YES
When will the algorithm reach the fixed point, or when can
* we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis
YES
\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\7 If S0, is-there-onty-one—solution-orenly-oncfeapotnt? If

more than one, is our solution the besYtErée (most precise)?
\/ When will the algorithm reach the fixed point, or when can
we get the solution?

£ #iterations.
\Worst case Ot 7 O and
ct of the \attice h (%FG

rodu
the t‘;‘e number Of n

Yue Li @ Nanjing University

May and Must Analyses, a Lattice View

T{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
N
1 {}

T{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
N
1 {}

Assume this lattice is a result of the

product lattice we introduced before

Yue Li @ Nanjing University

Yue Li @ Nanjing University

No definitions T - "
can reach nsafe resu

Yue Li @ Nanjing University

All definitions —— Safe but
may reach Useless result

AY

No definitions Unsafe —

can reach

Yue Li @ Nanjing University

T{a,b,c}

LN
o B b
o< <l

{a}

~

1

All definitions _—_ ISEIEY
Useless result

may reach

{b} {c}
-
{}

No definitions
can reach

Yue Li @ Nanjing University

o RTI

AY

All definitions —— ISEI=Re]li
may reach Useless result

T {a,b,c}
et [
{a,b b,c} /
{i} {b} {i}

T -

AAY

No definitions T f "
can reach nsafe resu

Yue Li @ Nanjing University

All definitions —— Safe but
may reach Useless result

d

No definitions T - "
can reach 1 nsafe resu

Yue Li @ Nanjing University

All definitions —— Safe but
may reach Useless result

d

Unsafe

No definitions

nsafe r I
can reach Unsafe result

Yue Li @ Nanjing University

All definitions —— ISEI=Re]li
may reach Useless result

Fixed Points

No definitions

nsafe r It
can reach Unsafe resu

Yue Li @ Nanjing University

All definitions —— ISEI=Re]li
may reach Useless result

Fixed Points

Safe /EER]
Fixed Point
_~ ’
= Truth
A
Unsafe

/
AVAY

No definitions U : ¢
can reach i "saic resu

Yue Li @ Nanjing University

All definitions —— ISEI=Re]li
may reach Useless result

Less
Precise
Fixed Points
o)
Safe /EER]
Fixed Point
_~ ’
= Truth
A
Unsafe

/
AVAY

No definitions
Unsafe result
can reach |

Yue Li @ Nanjing University

MU

All definitions —— ISEI=Re]li
may reach Useless result

Less
Precise
Fixed Points
o)
Safe /EER]
Fixed Point
_~ ’
/ 4z Truth
A
Unsafe

/
AVAY

No definitions
Unsafe result
can reach |

Yue Li @ Nanjing University

Unsafe result &

MU

_ All expressions All definitions —— ISEI{ReSI
must be available may reach Useless result

Less
Precise
Fixed Points
o)
Safe /EER]
Fixed Point
/ ’
/ 4z Truth
A
Unsafe

/
AVAY

No definitions
Unsafe result
can reach

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result

M @ Less ‘
Precise
Fixed Points
o)
Safe /EER]
Fixed Point

/ ’
= Truth

/
v
Unsafe
AVAY
No expressions No definitions

Safe but Unsafe result
are available can reach
Useless result —

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result

I

Less
Precise
Fixed Points
o)
Safe /EER]
Fixed Point
_~ ’
/ 4z Truth
A
Unsafe

No expressions No definitions E—
Safe but are available can reach _ Unsafe result

Useless result s _

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result
v - N\

Precise
Fixed Points

Safe /EER]
Truth Fixed Point
_~ ’
/ 4z Truth
yd
Unsafe

No expressions No definitions E—
Safe but , Unsafe result
Useless result [iiiiailols can reach 1

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result
v - N\

Precise
Fixed Points

- O |\
Unsafe Safe /EER]
Truth Fixed Point
v ’
/ 4z Truth
vd
Unsafe

No expressions No definitions E—
Safe but , Unsafe result
Useless result [iiiiailols can reach 1

Yue Li @ Nanjing University

Unsate result_ji
,SJT’

Truth

_ All expressions
must be available

g7

e
Unsafe

Safe but
Useless result e

No expressions
are available

may reach

All definitions _—_ ISEIEY
Useless result

Less

Precise

Safe

-

e

yd
Unsafe

.

No definitions
can reach

/EER

I

Fixed Points

Fixed Point

Truth ’

AAY

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result
v - N\

Precise
Fixed Points

P 0|\
Unsafe Safe /CER
Truth Fixed Point
/ ’
/ 4z Truth
d
Unsafe

Fixed Points

/
‘ _AVAY

No expressions No definitions

Safe but : Unsafe result
are available can reach

Useless result s —

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ESEIRJI]
must be available may reach Useless result

I

Less
Precise
Fixed Points
o)
Safe /EER]
Fixed Point
/ - ’
Greatest / o~z Truth
A
Unsafe

Fixed Point '

Fixed Points

/
AVAY

No expressions No definitions

Safe but : Unsafe result
are available can reach

Useless result s —

Yue Li @ Nanjing University

Unsafe result TRE All expressions All definitions —— ISEIEY I
must be available may reach Useless result
e=3 ‘
Precise
Fixed Points
O)\
Safe /EER]
Fixed Point
/ - ’
Greatest / ¥ Truth
Fixed Point ' A
Unsafe
. . Less
Fixed Points Precise /
No expressions No definitions
SEIE ol are available can reach 1 Unsafe result

Useless result s

Yue Li @ Nanjing University

Unsafe result BB

g7

Another view to explain greatest/least fixed point?

U
Truth w

Greatest

Fixed Point '

Fixed Points

Safe but
Useless result s

All expressions
must be available

_ "\

All definitions —— ISEIER I
may reach Useless result

Less
Precise

(“minimal step” by meet/join)

Less
Precise

No expressions
are available

Yo¥{ Least
Fixed Point

= Truth I

dale

-

yd
Unsafe

.

No definitions
can reach

2

Unsafe result

Yue Li @ Nanjing University

Unsafe result BB

Greatest

Fixed Points

Safe but

Useless result

Fixed Point '

All expressions
must be available

Less
Precise

No expressions
are available

All definitions —— ISEI=Re]li
may reach Useless result

Fixed Points

Less
Precise

Safe /CER
Fixed Point
_~ ’
/ Truth
A
Unsafe

.

No definitions
can reach

AAY

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)
P =Entry 2 5,2 5,2 .. 2 S,

Entry

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)
P =Entry 2 5,2 5,2 .. 2 S,

Entry
/ Transfer function Fy for a path P (from Entry

to S,) is a composition of transfer functions for
all statements on that path: fgq, s, ..., fsi 1

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)

Entry

P =Entry 2 5,2 5,2 .. 2 S,

Transfer function Fy for a path P (from Entry
to S,) is a composition of transfer functions for
all statements on that path: fgq, s, ..., fsi 1

MOP[s;]= LI/M Fp(OUT[Entry])

A path P from Entry to S;

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)
P =Entry 2 5,2 5,2 .. 2> S,

Entry

Transfer function Fy for a path P (from Entry

to S,) is a composition of transfer functions for
all statements on that path: fgq, fs,, ..., fsi 1

MOP[s]= LI/M Fp(OUTEntry])

A path P from Entry to S;

MOP computes the data-flow values at the end of

each path and apply join / meet operator to these

values to find their lub / glb

Yue Li @ Nanjing University

How Precise Is Our Solution?

Meet-Over-All-Paths Solution (MOP)

Entry

P =Entry 2 5,2 5,2 .. 2> S,

Transfer function Fy for a path P (from Entry
to S,) is a composition of transfer functions for

all statements on that path: fgq, fs,, ..., fsi 1

MOP[s]= LI/M Fp(OUTEntry])

A path P from Entry to S;

MOP computes the data-flow values at the end of
each path and apply join / meet operator to these
values to find their lub / glb

Some paths may be not executable = not fully precise

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)

Entry

P =Entry 2 5,2 5,2 .. 2> S,

Transfer function Fy for a path P (from Entry
to S,) is a composition of transfer functions for
all statements on that path: fgq, fs,, ..., fsi 1

MOP[s]= LI/M Fp(OUTEntry])

A path P from Entry to S;

MOP computes the data-flow values at the end of

each path and apply join / meet operator to these
values to find their lub / glb

Some paths may be not executable = not fully precise
Unbounded, and not enumerable =» impractical

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry

S3

!

S4

|N[S4] = fgg (f91 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

Ours (lterative Algorithm) vs. MOP

Entry

AN

[s: 2|

NG

S3

\ 4 \|/v

S4

|N[S4] = fgg (f91 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

MOP[s,4] = f5, (fs, (OUT[entry])) U f5, (fs, (OUT[Entry]))

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry

AN

[s: 2|

NG

S3

\ 4 \|/v

S4

|N[S4] = fgg (f;‘1 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

MOP[s,4] = f5, (fs, (OUT[entry])) U f5, (fs, (OUT[Entry]))

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry

// \\ Ours =F(x U y)

[s: 2|

MOP = F(x) u F(y)
N

S3

\ 4 \l/v

S4

|N[S4] = fgg (f;‘1 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

MOP[s,4] = f5, (fs, (OUT[entry])) U f5, (fs, (OUT[Entry]))

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry ?_
// \\ Ours=F(xuy) =

[s: 2|

MOP = F(x) u F(y)
N

S3

\ 4 \l/v

S4

|N[S4] = fgg (f;‘1 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

MOP[s,4] = f5, (fs, (OUT[entry])) U f5, (fs, (OUT[Entry]))

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

MOP = F(x) U F(y)

Ours (lterative Algorithm) vs. MOP

By definition of lub LI, we have

xExUyandyEx Uy

Ours =F(x UYy)

MOP = F(x) U F(y)

|

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy
As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy
As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy
As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy
As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have
F(x)UF(y)EFXx UYy)

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy
As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have
F(x) U F(y) E F(x U y)
MOP E Ours

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

F(x)UF(y)EFXx UYy)

MOP E Ours
(Ours is less precise than MOP)

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

F(x)UF(y)EFXx UYy)

MOP E Ours
(Ours is less precise than MOP)

When F is distributive, i.c.,
F(x U'y) = F(x) U F(y)

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

F(x)UF(y)EFXx UYy)

MOP E Ours
(Ours is less precise than MOP)

When F is distributive, i.c.,
F(x Uy) =F(x) U F(y)
MOP = Ours

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

F(x)UF(y)EFXx UYy)

MOP E Ours
(Ours is less precise than MOP)

When F is distributive, i.c.,
F(x U y) = F(x) U F(y)
MOP = Ours
(Owrs is as precise as MOP)

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

By definition of lub LI, we have MOP = F(x) U F(y)
xExUyandyEx Uy

As transfer function F is monotonic, we have

F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s thg

When F is distributive, i.c.,

F(x Uy)=F(x) U F(y)
MOP = Ours

(Ouwrs is as precise as MOP)

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

By definition of lub LI, we have MOP = F(x) U F(y)
xExUyandyEx Uy

As transfer function F is monotonic, we have

F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s thg

(Ouwurs is less precise Ui
aﬂa\VSGS

MOP = Ours

(Ouwrs is as precise as MOP)

Yue Li @ Nanjing University

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where X is a variable and v is the value held by x after that node

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where X is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where X is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where X is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
* D: adirection of data flow: forwards or backwards
? L: a lattice including domain of the values V and a

meet M or join U operator
b F: a family of transfer functions from V to V

Constant Propagation — Lattice

« Domain of the values V

 Meet Operator I

Yue Li @ Nanjing University

Constant Propagation — Lattice

UNDEF

7 INN

« Domain of the values V

1 0 1 2 -

NN %

 Meet Operator I NAC

Yue Li @ Nanjing University

Constant Propagation — Lattice

UNDEF

7 INN

« Domain of the values V

1 0 1 2 -

NN %

 Meet Operator I NAC

NAC N v =NAC

Yue Li @ Nanjing University

Constant Propagation — Lattice

 Domain of the values V T
7 l\\
- =2 -1
 Meet Operator I \\Il\lic//

NAC M v =NAC
UNDEF Mv=v

Yue Li @ Nanjing University

Constant Propagation — Lattice

 Domain of the values V /?\lfii\\
-2 -1
 Meet Operator I NAC
NAC v =NAC
UNDEFMNv=v Uninitialized variables are not the focus

in our constant propagation analysis

Yue Li @ Nanjing University

Constant Propagation — Lattice

 Domain of the values V /?\lfii\\
-2 -1
 Meet Operator I NAC
NAC v =NAC
UNDEFMNv=v Uninitialized variables are not the focus

in our constant propagation analysis

cnv=7

Yue Li @ Nanjing University

Constant Propagation — Lattice

 Domain of the values V /?\lfii\\
-2 -1

 Meet Operator I NAC

NAC v =NAC

UNDEFMNv=v Uninitialized variables are not the focus

In our constant propagation analysis
cfv="
-cllc=c

'CII_IC2=NAC

Yue Li @ Nanjing University

Constant Propagation — Lattice

 Domain of the values V /?\Tii\\
-2 -1
 Meet Operator I NAC
NAC v =NAC
UNDEFMNv=v Uninitialized variables are not the focus
in our constant propagation analysis
cfv="

At each path confluence PC, we should
-clc=c apply “meet” for all variables in the
-¢; M ¢, =NAC incoming data-flow values at that PC

Yue Li @ Nanjing University

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

e s:x=c;//cisaconstant

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}
°* SIX=VY,;

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}
* SIXEY; gen = {(x, val(y))}

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c¢;// cisaconstant gen ={(x, c)}
¢ SIX=Y; gen = {(x, val(y))}
* SIX=YyoOpz; gen = {(x, f(y,z))}

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}

c SIX=VY; gen = {(x, val(y))}
* SIX=YyoOpZ gen = {(x, f(y,z))}

— val(y) op val(z) //if val(y) and val(z) are constants
fly,z) =3 NAC /1 if val(y) or val(z) is NAC

_ UNDEF /I otherwise

Yue Li @ Nanjing University

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}

© SIX=VY; gen = {(x, val(y))}
* SIX=YyoOpZ gen = {(x, f(y,z))}

— val(y) op val(z) //if val(y) and val(z) are constants
fly,z) =3 NAC /[if val(y) or val(z) is NAC

__ UNDEF /I otherwise

(if s is not an assignment statement, F is the identity function)

Yue Li @ Nanjing University

Constant Propagation — Nondistributivity

Entry

N\

a 1 a

b

9
1

x\ /Y

=a+b

Yue Li @ Nanjing University

Constant Propagation — Nondistributivity

Entry

/ \ FXNY)=

d

1 3 =9 F(X) N E(Y) =
9 b=1

b

X\, Y

c=a+b

Constant Propagation — Nondistributivity

Entry

N\

a
b

1 a
9 b

9
1

F(X NY) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) N F(Y) =

X\, Y

c=a+b

Constant Propagation — Nondistributivity

Entry

/ \ F(X M'Y) = {(a, NAC), (b, NAC), (c. NAC)}

F(X) N F(Y) = {(a, NAC), (b, NAC), (¢, 10)}

a 1

9
1

a
b =29 b

X\, Y

c=a+b

Constant Propagation — Nondistributivity

Entry

N\

a
b

1 a
9 b

9
1

F(X MY) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) M F(Y) = {(a, NAC), (b, NAC), (c, 10)}
F(X MY) # F(X) N F(Y)

X\, Y

c=a+b

Constant Propagation — Nondistributivity

Entry

N\

a
b

1 a
9 b

9
1

X\, Y

c=a+b

F(X MY) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) M F(Y) = {(a, NAC), (b, NAC), (c, 10)}
F(X MY) # F(X) N F(Y)

F(X NY) C F(X) 1 F(Y)

Constant Propagation — Nondistributivity

Entry

/ \ F(X M'Y) = {(a, NAC), (b, NAC), (c. NAC)}

F(X) N F(Y) = {(a, NAC), (b, NAC), (c, 10)}
F(XMY)#FX)NFEY)

1 a
9 b

a
b

9
1

X\, Y

c=a+b

Yue Li @ Nanjing University

Constant Propagation — Nondistributivity

Entry
/ \ F(X MY) = {(a, NAC), (b, NAC), (¢, NAC)}

9 F(X) N F(Y) = {(a, NAC), (b, NAC), (c, 10)}
FX NY) £ FX) nFY)

x\ /Y F(X 1Y) E FX)nEY
m

a 1

b

c=a+b

Worklist Algorithm,

an optimization of lterative Algorithm

Review lterative Algorithm for May & Forward Analysis

INPUT: CFG (killg and geng computed for each basic block B)
OUTPUT: IN[B] and OUTIB] for each basic block B

METHOD:

OUTl[entry] = ©;
for (each basic block Blentry)

OUT[B] = ¢;
while (changes to any OUT occur)
for (each basic block Blentry) {

IN[B] = IJPapredecessor of B OUT[P];
OUT[B] = geng U (IN[B] - killg);

Worklist Algorithm

OUT[entry] = @;
for (each basic block Blentry)
OUTIB] = 0;

Worklist < all basic blocks
while (Worklist is not empty)
Pick a basic block B from Worklist

old OUT = OUT[B]
IN[B] = IJPapredecessor of B OUTIFL;
OUT[B] = geng U (IN[B] - Killg);
if (old_OUT + OUTIB])
Add all successors of B to Worklist

Yue Li @ Nanjing University

Worklist Algorithm

OUT[entry] = @;
for (each basic block Blentry)
OUTIB] = 0;

Worklist < all basic blocks
while (Worklist is not empty)
Pick a basic block B from Worklist

old OUT = OUT[B]
IN[B] = IJPapredecessor of B OUTIFL;
OUT[B] = geng U (IN[B] - Killg);
if (old_OUT + OUTIB])
Add all successors of B to Worklist

OUT will not change if IN does not change

Yue Li @ Nanjing University

swvvwwm‘é S
1. Iterative Algorithm, Another View
2. Partial Order
3. Upper and Lower Bounds
4. Lattice, Semilattice, Complete and Product Lattice
5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

/. Relate Iterative Algorithm to Fixed Point Theorem
8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

The X You Need To Understand tn This Lecture

« Understand the functional view of iterative algorithm
* The definitions of lattice and complete lattice

« Understand the fixed-point theorem

 How to summarize may and must analyses in lattices

* The relation between MOP and the solution produced
by the iterative algorithm

« Constant propagation analysis
* Worklist algorithm

FRER!
XNE227!

Yue Li @ Nanjing University

