
Nanjing University

Tian Tan

2020

Pointer Analysis

Static Program Analysis

Contents

1. Motivation
2. Introduction to Pointer Analysis
3. Key Factors of Pointer Analysis
4. Concerned Statements

2Tian Tan @ Nanjing University

Contents

1. Motivation
2. Introduction to Pointer Analysis
3. Key Factors of Pointer Analysis
4. Concerned Statements

3Tian Tan @ Nanjing University

Problem of CHA

4

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

Tian Tan @ Nanjing University

Problem of CHA

5

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA:

• call targets

Tian Tan @ Nanjing University

Problem of CHA

6

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on
class hierarchy
• 3 call targets

Tian Tan @ Nanjing University

Problem of CHA

7

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on
class hierarchy
• 3 call targets

Constant propagation
• x =

Tian Tan @ Nanjing University

Problem of CHA

8

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on
class hierarchy
• 3 call targets

Constant propagation
• x = NAC

Tian Tan @ Nanjing University

Problem of CHA

9

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on only considers
class hierarchy
• 3 call targets
• 2 false positives

Constant propagation
• x = NACX X

Tian Tan @ Nanjing University

imprecise

Via Pointer Analysis

10

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on only considers
class hierarchy
• 3 call targets
• 2 false positives

Constant propagation
• x = NAC

Pointer analysis: based on
points-to relation
• 1 call target

Tian Tan @ Nanjing University

imprecise

n points to new One

Via Pointer Analysis

11

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on only considers
class hierarchy
• 3 call targets
• 2 false positives

Constant propagation
• x = NAC

Pointer analysis: based on
points-to relation
• 1 call target

Constant propagation
• x = 1

Tian Tan @ Nanjing University

imprecise

n points to new One

Via Pointer Analysis

12

void foo() {
Number n = new One();
int x = n.get();

}

interface Number {
int get();

}
class Zero implements Number {

public int get() { return 0; }
}
class One implements Number {

public int get() { return 1; }
}
class Two implements Number {

public int get() { return 2; }
}

CHA: based on only considers
class hierarchy
• 3 call targets
• 2 false positives

Constant propagation
• x = NAC

Pointer analysis: based on
points-to relation
• 1 call target
• 0 false positive

Constant propagation
• x = 1

Tian Tan @ Nanjing University

imprecise

precise

n points to new One

Contents

13Tian Tan @ Nanjing University

1. Motivation
2. Introduction to Pointer Analysis
3. Key Factors of Pointer Analysis
4. Concerned Statements

Pointer Analysis
• A fundamental static analysis

• Computes which memory locations a pointer can point to

14Tian Tan @ Nanjing University

Pointer Analysis
• A fundamental static analysis

• Computes which memory locations a pointer can point to

• For object-oriented programs (focus on Java)
• Computes which objects a pointer (variable or field) can point to

15Tian Tan @ Nanjing University

Pointer Analysis
• A fundamental static analysis

• Computes which memory locations a pointer can point to

• For object-oriented programs (focus on Java)
• Computes which objects a pointer (variable or field) can point to

• Regarded as a may-analysis
• Computes an over-approximation of the set of objects that a pointer

can point to, i.e., we ask “a pointer may point to which objects?”

16Tian Tan @ Nanjing University

Pointer Analysis
• A fundamental static analysis

• Computes which memory locations a pointer can point to

• For object-oriented programs (focus on Java)
• Computes which objects a pointer (variable or field) can point to

• Regarded as a may-analysis
• Computes an over-approximation of the set of objects that a pointer

can point to, i.e., we ask “a pointer may point to which objects?”

17

A research area with 40+ years of history
 William E. Weihl, “Interprocedural Data Flow Analysis in the Presence

of Pointers, Procedure Variables, and Label Variables”. POPL 1980.
Still an active area today

 OOPSLA’18, FSE’18, TOPLAS’19, OOPSLA’19, TOPLAS’20, …
Tian Tan @ Nanjing University

Example

18

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

“Which objects a pointer can point to?”

Program Points-to relations

Tian Tan @ Nanjing University

Example

19

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Variable Object

a new A

x new B

Program Points-to relations

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Example

Variable Object

a new A

x new B

this

b

20

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Program Points-to relations

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Example

Variable Object

a new A

x new B

this new A

b new B

21

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Program Points-to relations

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Example

Variable Object

a new A

x new B

this new A

b new B

22

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Field Object

new A.b new B

Program

“Which objects a pointer can point to?”

Points-to relations

Tian Tan @ Nanjing University

Example

23

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Field Object

new A.b new B

Variable Object

a new A

x new B

this new A

b new B

y

Program Points-to relations

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Example

24

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Field Object

new A.b new B

Variable Object

a new A

x new B

this new A

b new B

y new B

Program Points-to relations

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Example

Program Points-to relations

25

void foo() {
A a = new A();
B x = new B();
a.setB(x);
B y = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Field Object

new A.b new B

Variable Object

a new A

x new B

this new A

b new B

y new B

Pointer
Analysis

input output

“Which objects a pointer can point to?”

Tian Tan @ Nanjing University

Pointer Analysis and Alias Analysis

Two closely related but different concepts
• Pointer analysis: which objects a pointer can point to?
• Alias analysis: can two pointers point to the same object?

Tian Tan @ Nanjing University 26

Pointer Analysis and Alias Analysis

Two closely related but different concepts
• Pointer analysis: which objects a pointer can point to?
• Alias analysis: can two pointers point to the same object?

If two pointers, say p and q, refer to the same object, then p
and q are aliases

Tian Tan @ Nanjing University 27

p = new C();
q = p;
x = new X();
y = new Y();

p and q are aliases
x and y are not aliases

Pointer Analysis and Alias Analysis

Two closely related but different concepts
• Pointer analysis: which objects a pointer can point to?
• Alias analysis: can two pointers point to the same object?

If two pointers, say p and q, refer to the same object, then p
and q are aliases

Tian Tan @ Nanjing University 28

Alias information can be derived from points-to relations

p = new C();
q = p;
x = new X();
y = new Y();

p and q are aliases
x and y are not aliases

Applications of Pointer Analysis

• Fundamental information
oCall graph, aliases, …

• Compiler optimization
oVirtual call inlining, …

• Bug detection
oNull pointer detection, …

• Security analysis
o Information flow analysis, …

• And many more …

29Tian Tan @ Nanjing University

“Pointer analysis is one of the most
fundamental static program analyses,

on which virtually all others are built.”*

Applications of Pointer Analysis

• Fundamental information
oCall graph, aliases, …

• Compiler optimization
oVirtual call inlining, …

• Bug detection
oNull pointer detection, …

• Security analysis
o Information flow analysis, …

• And many more …

30

“Pointer analysis is one of the most
fundamental static program analyses,

on which virtually all others are built.”*

*Pointer Analysis - Report from Dagstuhl Seminar 13162. 2013.
Tian Tan @ Nanjing University

Contents

31Tian Tan @ Nanjing University

1. Motivation
2. Introduction to Pointer Analysis
3. Key Factors of Pointer Analysis
4. Concerned Statements

Key Factors in Pointer Analysis

32

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

33

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

34

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

35

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

36

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

37

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Heap Abstraction

How to model heap memory?
• In dynamic execution, the number of heap objects can be unbounded

due to loops and recursion

38

for (…) {
A a = new A();

}

Tian Tan @ Nanjing University

Heap Abstraction

How to model heap memory?
• In dynamic execution, the number of heap objects can be unbounded

due to loops and recursion

• To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

39

for (…) {
A a = new A();

}

Tian Tan @ Nanjing University

…

Heap Abstraction

How to model heap memory?
• In dynamic execution, the number of heap objects can be unbounded

due to loops and recursion

• To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

40

Dynamic execution Static analysis

abstracted

Bounded abstract objectsUnbounded concrete objects

for (…) {
A a = new A();

}

Tian Tan @ Nanjing University

Heap Abstraction

41Tian Tan @ Nanjing University
Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016

Heap Abstraction

42Tian Tan @ Nanjing University
Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016

Allocation-Site Abstraction

• Model concrete objects by their allocation sites
• One abstract object per allocation site to represent

all its allocated concrete objects

43

The most commonly-used heap abstraction

Tian Tan @ Nanjing University

Allocation-Site Abstraction

• Model concrete objects by their allocation sites
• One abstract object per allocation site to represent

all its allocated concrete objects

44

1 for (i = 0; i < 3; ++i) {
2 a = new A();
3 …
4 }

Dynamic execution

𝑜𝑜2, iteration i = 0
𝑜𝑜2, iteration i = 1
𝑜𝑜2, iteration i = 2

Tian Tan @ Nanjing University

The most commonly-used heap abstraction

Allocation-Site Abstraction

• Model concrete objects by their allocation sites
• One abstract object per allocation site to represent

all its allocated concrete objects

45

1 for (i = 0; i < 3; ++i) {
2 a = new A();
3 …
4 }

𝑜𝑜2

Dynamic execution
Allocation-site

abstraction

𝑜𝑜2, iteration i = 0
𝑜𝑜2, iteration i = 1
𝑜𝑜2, iteration i = 2

abstracted

Tian Tan @ Nanjing University

The most commonly-used heap abstraction

Allocation-Site Abstraction

• Model concrete objects by their allocation sites
• One abstract object per allocation site to represent

all its allocated concrete objects

46

1 for (i = 0; i < 3; ++i) {
2 a = new A();
3 …
4 }

𝑜𝑜2

Dynamic execution

𝑜𝑜2, iteration i = 0
𝑜𝑜2, iteration i = 1
𝑜𝑜2, iteration i = 2

abstracted

Tian Tan @ Nanjing University

The number of allocation sites
in a program is bounded,

thus the abstract objects must
be finite.

The most commonly-used heap abstraction

Allocation-site
abstraction

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

47

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Context Sensitivity
How to model calling contexts?

48

Context-sensitive Context-insensitive

Distinguish different calling contexts of a
method

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Tian Tan @ Nanjing University

Context Sensitivity
How to model calling contexts?

49

a.foo(x); b.foo(y);

Context 1:
void foo(T p) {

…
}

Context-sensitive Context-insensitive

Distinguish different calling contexts of a
method

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Context 2:
void foo(T p) {

…
}

Tian Tan @ Nanjing University

Context Sensitivity
How to model calling contexts?

50

a.foo(x); b.foo(y);

Context 1:
void foo(T p) {

…
}

Context-sensitive Context-insensitive

Distinguish different calling contexts of a
method

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Context 2:
void foo(T p) {

…
}

Tian Tan @ Nanjing University

a.foo(x); b.foo(y);

void foo(T p) {
…

}

Context Sensitivity
How to model calling contexts?

51

a.foo(x); b.foo(y);

Context 1:
void foo(T p) {

…
}

Context-sensitive Context-insensitive

Distinguish different calling contexts of a
method

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Context 2:
void foo(T p) {

…
}

Tian Tan @ Nanjing University

a.foo(x); b.foo(y);

void foo(T p) {
…

}

Context Sensitivity
How to model calling contexts?

52

a.foo(x); b.foo(y);

Context 1:
void foo(T p) {

…
}

Context-sensitive Context-insensitive

Distinguish different calling contexts of a
method

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Context 2:
void foo(T p) {

…
}

Tian Tan @ Nanjing University

a.foo(x); b.foo(y);

void foo(T p) {
…

}

Very useful technique
Significantly improve precision
More details in later lectures

We start with this

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

53

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

54

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

55

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

Tian Tan @ Nanjing University

So far, all data-flow analyses
we have learnt are flow-sensitive

Flow Sensitivity
How to model control flow?

56

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

57

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

58

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

59

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

60

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

Tian Tan @ Nanjing University

Flow Sensitivity
How to model control flow?

61

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

Flow Sensitivity
How to model control flow?

62

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

63

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

64

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

65

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"x", "y"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

66

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"x", "y"}
s ➝

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

67

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"x", "y"}
s ➝ {"x", "y"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Flow Sensitivity
How to model control flow?

68

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"x", "y"}
s ➝ {"x", "y"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

false positive

Flow Sensitivity
How to model control flow?

69

Flow-sensitive Flow-insensitive

Respect the execution order of the
statements

Ignore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at
each program location

Maintain one map of points-to relations for
the whole program

1 c = new C();
2 c.f = "x";
3 s = c.f;
4 c.f = "y";

c ➝ {o1}
o1.f ➝ {"x"}
s ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"x", "y"}
s ➝ {"x", "y"}

c ➝ {o1}

c ➝ {o1}
o1.f ➝ {"x"}

c ➝ {o1}
o1.f ➝ {"y"}
s ➝ {"x"}

Chosen in this course

Key Factors in Pointer Analysis

Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow sensitivity How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

70

• Pointer analysis is a complex system
• Multiple factors affect the precision and efficiency of the system

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

71

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

72

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

1 x = new A();
2 y = x;
3 …
4 z = new T();
5 z.bar();

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

73

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

1 x = new A();
2 y = x;
3 …
4 z = new T();
5 z.bar();

x ➝ {o1}
y ➝ {o1}
z ➝ {o4}

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

74

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

1 x = new A();
2 y = x;
3 …
4 z = new T();
5 z.bar();

x ➝ {o1}
y ➝ {o1}
z ➝ {o4}

Client: call graph construction
Site of interest: line 5

What points-to information
do we need

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

75

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

1 x = new A();
2 y = x;
3 …
4 z = new T();
5 z.bar();

x ➝ {o1}
y ➝ {o1}
z ➝ {o4}

Client: call graph construction
Site of interest: line 5

z ➝ {o4}

Tian Tan @ Nanjing University

Analysis Scope
Which parts of program should be analyzed?

76

Whole-program Demand-driven

Compute points-to information for all
pointers in the program

Only compute points-to information for
the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients Provide information for specific clients

1 x = new A();
2 y = x;
3 …
4 z = new T();
5 z.bar();

Chosen in this course

Client: call graph construction
Site of interest: line 5

z ➝ {o4}

x ➝ {o1}
y ➝ {o1}
z ➝ {o4}

Tian Tan @ Nanjing University

Pointer Analysis in This Course
Factor Problem Choice
Heap
abstraction

How to model heap
memory?

• Allocation-site
• Storeless

Context
sensitivity

How to model calling
contexts?

• Context-sensitive
• Context-insensitive

Flow
sensitivity

How to model control
flow?

• Flow-sensitive
• Flow-insensitive

Analysis scope Which parts of program
should be analyzed?

• Whole-program
• Demand-driven

77Tian Tan @ Nanjing University

Contents

78Tian Tan @ Nanjing University

1. Motivation
2. Introduction to Pointer Analysis
3. Key Factors of Pointer Analysis
4. Concerned Statements

What Do We Analyze?
• Modern languages typically have many kinds of statements

• if-else
• switch-case
• for/while/do-while
• break/continue
• …

79Tian Tan @ Nanjing University

What Do We Analyze?
• Modern languages typically have many kinds of statements

• if-else
• switch-case
• for/while/do-while
• break/continue
• …

• We only focus on pointer-affecting statements

80

Do not directly affect pointers
Ignored in pointer analysis

Tian Tan @ Nanjing University

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 81

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 82

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 83

Sometimes referred as global variable

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 84

Modeled as an object
(pointed by x) with a field f

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 85

Ignore indexes. Modeled as
an object (pointed by array)

with a single field, say arr,
which may point to any value

stored in array

array = new String[10];
array[0] = "x";
array[1] = "y";
s = array[0];

array = new String[];
array.arr = "x";
array.arr = "y";
s = array.arr;

Real code Perspective of pointer analysis

Pointers in Java

• Local variable: x

• Static field: C.f

• Instance field: x.f

• Array element: array[i]

Tian Tan @ Nanjing University 86

Pointer-Affecting Statements

Tian Tan @ Nanjing University 87

New x = new T()

Assign x = y

Store x.f = y

Load y = x.f

Call r = x.k(a, …)

Pointer-Affecting Statements

Tian Tan @ Nanjing University 88

New x = new T()

Assign x = y

Store x.f = y

Load y = x.f

Call r = x.k(a, …)

x.f.g.h = y;

t1 = x.f
t2 = t1.g
t2.h = y;

Complex memory-accesses will be
converted to three-address code by

introducing temporary variables

Pointer-Affecting Statements

Tian Tan @ Nanjing University 89

New x = new T()

Assign x = y

Store x.f = y

Load y = x.f

Call r = x.k(a, …)

• Static call C.foo()

• Special call super.foo()/x.<init>()/this.privateFoo()

• Virtual call x.foo()

• Static call C.foo()

• Special call super.foo()/x.<init>()/this.privateFoo()

• Virtual call x.foo()

Pointer-Affecting Statements

Tian Tan @ Nanjing University 90

New x = new T()

Assign x = y

Store x.f = y

Load y = x.f

Call r = x.k(a, …)

focus

The X You Need To Understand in This Lecture

• What is pointer analysis?

• Understand the key factors of pointer analysis

• Understand what we analyze in pointer analysis

Tian Tan @ Nanjing University

Nanjing University

Tian Tan

2020

Pointer Analysis

Static Program Analysis

Foundations (I)

Contents

1. Pointer Analysis: Rules
2. How to Implement Pointer Analysis
3. Pointer Analysis: Algorithms
4. Pointer Analysis with Method Calls

93Tian Tan @ Nanjing University

Contents

1. Pointer Analysis: Rules
2. How to Implement Pointer Analysis
3. Pointer Analysis: Algorithms
4. Pointer Analysis with Method Calls

94Tian Tan @ Nanjing University

Pointer-Affecting Statements

Tian Tan @ Nanjing University 95

New x = new T()

Assign x = y

Store x.f = y

Load y = x.f

Call r = x.k(a, …) Will come back to this in
pointer analysis with method calls

First focus on these statements
(suppose the program has just one method)

Domain and Notations

96

Variables: x, y ∈ V
Fields: f, g ∈ F
Objects: oi, oj ∈ O
Instance fields: oi.f, oj.g ∈ O × F
Pointers: Pointer = V ⋃ (O × F)
Points-to relations: pt : Pointer → 𝒫𝒫(O)

• 𝒫𝒫(O) denotes the powerset of O
• pt(p) denotes the points-to set of p

Tian Tan @ Nanjing University

Rules

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Store x.f = y 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑦𝑦
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑜𝑜𝑖𝑖 . 𝑓𝑓)

Load y = x.f 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑜𝑜𝑖𝑖 . 𝑓𝑓
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)

97Tian Tan @ Nanjing University

Rules

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Store x.f = y 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑦𝑦
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑜𝑜𝑖𝑖 . 𝑓𝑓)

Load y = x.f 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑜𝑜𝑖𝑖 . 𝑓𝑓
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)

98Tian Tan @ Nanjing University

← premises

← conclusion

← unconditional

Rule: New

99

i: x = new T()

𝑜𝑜𝑖𝑖Conclusion

𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Tian Tan @ Nanjing University

Rule: Assign

100

𝑜𝑜𝑖𝑖
Conclusion

x = y

Premises

𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Tian Tan @ Nanjing University

Rule: Store

101

𝑜𝑜𝑖𝑖

x.f = y

𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑦𝑦
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑜𝑜𝑖𝑖 .𝑓𝑓)

𝑜𝑜𝑗𝑗
𝑓𝑓

Tian Tan @ Nanjing University

Conclusion
Premises

Rule: Load

102

𝑜𝑜𝑗𝑗

y = x.f

𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑜𝑜𝑖𝑖 .𝑓𝑓
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)

𝑜𝑜𝑖𝑖
𝑓𝑓

Tian Tan @ Nanjing University

Conclusion
Premises

Rules
Kind Rule Illustration

New 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥

Assign 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Store 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑦𝑦
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑜𝑜𝑖𝑖 . 𝑓𝑓)

Load 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝑜𝑜𝑖𝑖 . 𝑓𝑓
𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝑦𝑦)

103

Conclusion
Premises

𝑜𝑜𝑗𝑗

y = x.f

𝑜𝑜𝑖𝑖
𝑓𝑓

𝑜𝑜𝑖𝑖

x.f = y

𝑜𝑜𝑗𝑗
𝑓𝑓

x = y

𝑜𝑜𝑖𝑖

i: x = new T()

𝑜𝑜𝑖𝑖

Tian Tan @ Nanjing University

Contents

104

1. Pointer Analysis: Rules
2. How to Implement Pointer Analysis
3. Pointer Analysis: Algorithms
4. Pointer Analysis with Method Calls

Tian Tan @ Nanjing University

Our Pointer Analysis Algorithms

• A complete whole-program pointer analysis

• Carefully designed for understandability

• Easy to follow and implement

105Tian Tan @ Nanjing University

How to Implement Pointer Analysis?

• Essentially, pointer analysis is to propagate points-
to information among pointers (variables & fields)

106

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇)

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊. 𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)

Tian Tan @ Nanjing University

Pointer analysis as solving a system
of inclusion constraints for pointers

Referred as Andersen-style analysis*

How to Implement Pointer Analysis?

• Essentially, pointer analysis is to propagate points-
to information among pointers (variables & fields)

107

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇)

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊. 𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)

Tian Tan @ Nanjing University

Lars Ole Andersen, 1994. “Program Analysis and Specialization for the C
Programming Language”. Ph.D. Thesis. University of Copenhagen.

*

How to Implement Pointer Analysis?

• Essentially, pointer analysis is to propagate points-
to information among pointers (variables & fields)

108

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇)

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊. 𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)

Key to implementation: when 𝑝𝑝𝑝𝑝 𝑥𝑥 is changed,
propagate the changed part to the related pointers of 𝑥𝑥

Tian Tan @ Nanjing University

Solution
• We use a graph to connect

related pointers
• When 𝑝𝑝𝑝𝑝 𝑥𝑥 changes,

propagate the changed part
to 𝑥𝑥’s successors

How to Implement Pointer Analysis?

• Essentially, pointer analysis is to propagate points-
to information among pointers (variables & fields)

109

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇)

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊. 𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)

Key to implementation: when 𝑝𝑝𝑝𝑝 𝑥𝑥 is changed,
propagate the changed part to the related pointers of 𝑥𝑥

Tian Tan @ Nanjing University

Pointer Flow Graph (PFG)

Pointer flow graph of a program is a directed graph
that expresses how objects flow among the pointers in
the program.

110Tian Tan @ Nanjing University

Pointer Flow Graph (PFG)

Pointer flow graph of a program is a directed graph
that expresses how objects flow among the pointers in
the program.

• Nodes: Pointer = V ⋃ (O × F)
A node n represents a variable or a field of an abstract object

• Edges: Pointer × Pointer
An edge 𝑥𝑥 → 𝑦𝑦 means that the objects pointed by pointer 𝑥𝑥
may flow to (and also be pointed to by) pointer 𝑦𝑦

111Tian Tan @ Nanjing University

Pointer Flow Graph: Edges

• PFG edges are added according to the statements
of the program and the corresponding rules

112

Kind Statement Rule

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥)

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇)

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊.𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)

Tian Tan @ Nanjing University

Pointer Flow Graph: Edges

• PFG edges are added according to the statements
of the program and the corresponding rules

113

Kind Statement Rule PFG Edge

New i: x = new T() 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝑥𝑥) N/A

Assign x = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚)
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝(𝒙𝒙)

𝑥𝑥 ← 𝑦𝑦

Store x.f = y
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒚𝒚

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒐𝒐𝒊𝒊.𝒇𝒇) 𝑜𝑜𝑖𝑖 . 𝑓𝑓 ← 𝑦𝑦

Load y = x.f
𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑥𝑥 , 𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝 𝒐𝒐𝒊𝒊.𝒇𝒇

𝑜𝑜𝑗𝑗 ∈ 𝑝𝑝𝑝𝑝(𝒚𝒚) 𝑦𝑦 ← 𝑜𝑜𝑖𝑖 . 𝑓𝑓

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

114

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

115

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

①

Pointer Flow Graph: An Example

116

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

①

Pointer Flow Graph: An Example

117

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

①

②

Pointer Flow Graph: An Example

118

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

Oi.f

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

③

①

②

Pointer Flow Graph: An Example

119

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.f

c

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

③
④

①

②

Pointer Flow Graph: An Example

120

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.f

c

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

121

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.f

c

①

②

③
④

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

⑤

Pointer Flow Graph: An Example

122

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

123

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

⑤

 Variable node

 Instance field node

v

Oi.f

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

124

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

⑤

 Variable node

 Instance field node

v

Oi.f

With PFG, pointer analysis can be solved by
computing transitive closure of the PFG

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

125

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

⑤

 Variable node

 Instance field node

v

Oi.f

With PFG, pointer analysis can be solved by
computing transitive closure of the PFG

E.g, e is reachable from b on the PFG, which means that the
objects pointed by b may flow to and also be pointed by e

Tian Tan @ Nanjing University

Pointer Flow Graph: An Example

126

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

⑤

 Variable node

 Instance field node

v

Oi.f

With PFG, pointer analysis can be solved by
computing transitive closure of the PFG

E.g, e is reachable from b on the PFG, which means that the
objects pointed by b may flow to and also be pointed by e

Tian Tan @ Nanjing University

j: b = new T();
𝑝𝑝𝑝𝑝 𝑏𝑏 = {𝑜𝑜𝑗𝑗}

Pointer Flow Graph: An Example

127

Program

(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

①

②

③
④

⑤

 Variable node

 Instance field node

v

Oi.f

With PFG, pointer analysis can be solved by
computing transitive closure of the PFG

E.g, e is reachable from b on the PFG, which means that the
objects pointed by b may flow to and also be pointed by e

Tian Tan @ Nanjing University

j: b = new T();
𝑝𝑝𝑝𝑝 𝑏𝑏 = {𝑜𝑜𝑗𝑗}𝑝𝑝𝑝𝑝 𝑎𝑎 = {𝑜𝑜𝑗𝑗}

𝑝𝑝𝑝𝑝 𝑒𝑒 = {𝑜𝑜𝑗𝑗} 𝑝𝑝𝑝𝑝 𝑜𝑜𝑖𝑖 . 𝑓𝑓 = {𝑜𝑜𝑗𝑗}

Implementing Pointer Analysis

128

1. Build pointer flow graph (PFG)

2. Propagate points-to information on PFG

Tian Tan @ Nanjing University

Implementing Pointer Analysis

129

1. Build pointer flow graph (PFG)

2. Propagate points-to information on PFG

Mutually dependent

Tian Tan @ Nanjing University

①

②

③
④

⑤

Implementing Pointer Analysis

130

1. Build pointer flow graph (PFG)

2. Propagate points-to information on PFG

Program
(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

Mutually dependent

Tian Tan @ Nanjing University

①

②

③
④

⑤ PFG is dynamically
updated during
pointer analysis

Implementing Pointer Analysis

131

1. Build pointer flow graph (PFG)

2. Propagate points-to information on PFG

Program
(𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑐𝑐 , 𝑜𝑜𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝 𝑑𝑑)

Pointer flow graph

a = b; ①

c.f = a; ②

d = c; ③

c.f = d; ④

e = d.f; ⑤

ba

d

Oi.fe

c

Mutually dependent

Tian Tan @ Nanjing University

	Static Program Analysis
	Contents
	Contents
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Via Pointer Analysis
	Via Pointer Analysis
	Via Pointer Analysis
	Contents
	Pointer Analysis
	Pointer Analysis
	Pointer Analysis
	Pointer Analysis
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Pointer Analysis and Alias Analysis
	Pointer Analysis and Alias Analysis
	Pointer Analysis and Alias Analysis
	Applications of Pointer Analysis
	Applications of Pointer Analysis
	Contents
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Key Factors in Pointer Analysis
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Key Factors in Pointer Analysis
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Key Factors in Pointer Analysis
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Pointer Analysis in This Course
	Contents
	What Do We Analyze?
	What Do We Analyze?
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	The X You Need To Understand in This Lecture
	Static Program Analysis
	Contents
	Contents
	Pointer-Affecting Statements
	Domain and Notations
	Rules
	Rules
	Rule: New
	Rule: Assign
	Rule: Store
	Rule: Load
	Rules
	Contents
	Our Pointer Analysis Algorithms
	How to Implement Pointer Analysis?
	How to Implement Pointer Analysis?
	How to Implement Pointer Analysis?
	How to Implement Pointer Analysis?
	Pointer Flow Graph (PFG)
	Pointer Flow Graph (PFG)
	Pointer Flow Graph: Edges
	Pointer Flow Graph: Edges
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Pointer Flow Graph: An Example
	Implementing Pointer Analysis
	Implementing Pointer Analysis
	Implementing Pointer Analysis
	Implementing Pointer Analysis

