
1

Programming Assignment 2: Dead Code Detection

Course “Static Program Analysis” @Nanjing University

Assignments Designed by Tian Tan and Yue Li
Due: 23:00, Sunday, May 10, 2020

1 Goal

In this programming assignment, you will implement a dead code detection for Java

based on Bamboo. To implement dead code detection, you will also need to finish a

constant propagation and a live variable analysis in this assignment. We will describe

the details about these analyses in Section 3. Same as in Assignment 1, you only need

to consider a small subset of Java features.

2 Introduction to Bamboo

Bamboo is a static program analysis framework developed by the two instructors of this

course, and it supports multiple static analyses (e.g., data-flow analysis, pointer analysis,

etc.) for Java. Bamboo leverages Soot as front-end to parse Java programs and construct

IRs (Jimple). In this assignment, we only include the data-flow analysis framework of

Bamboo, and the necessary classes for dead code detection. You will see other parts of

Bamboo in the following assignments.

2.1 Content of Assignment

The content resides in folder bamboo/, which includes:

• analyzed/: The folder containing test input files.

• libs/: The folder containing Soot classes with its dependencies.

• src/: The folder containing the source code of Bamboo. You will need to

modify three files in this folder to finish this assignment.

• test/: The folder containing test classes.

• build.gradle: The Gradle build script for Bamboo.

• copyright.txt: The copyright of Bamboo.

2.2 Setup Instructions (Same as Assignment 1)

Bamboo is written in Java, so it is cross-platform. To build and run Bamboo, you need

to have Java 8 installed on your system (other Java versions are currently not supported).

You could download the Java Development Kit 8 from the following link:

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html

2

We highly recommend you to finish this (and the following) assignment(s) with IntelliJ

IDEA. Given the Gradle build script, it is very easy to import Bamboo to IntelliJ IDEA,

as follows.

Step 1

Download IntelliJ IDEA from JetBrains (http://www.jetbrains.com/idea/download/)

Step 2

Start to import a project

(Note: if you have already used IntelliJ IDEA, and opened some projects, then you

could choose File > New > Project from Existing Sources… to open the same dialog

for the next step.)

Step 3

Select the bamboo/ directory, then click “OK”.

Step 4

Import project from external model Gradle, then click “Finish”.

http://www.jetbrains.com/idea/download/

3

That’s it! You may wait a moment for importing Bamboo. After that, some Gradle-

related files/folders will be generated in Bamboo directory, and you can ignore them.

Step 5

Since Bamboo is imported from Gradle model, IntelliJ IDEA always build and run it

with Gradle, which makes it a bit slower and always output some annoying Gradle-

related messages:

Thus, we suggest you disable the Gradle in IntelliJ IDEA. Just go to File > Settings,

and change the build and run tool from Gradle to IntelliJ IDEA as shown:

Notice: If your system has multiple JDKs, make sure that IntelliJ IDEA uses Java 8

(otherwise you may experience NullPointerException thrown by Soot). To

4

configure this, go to File > Project Sturcture…, and select 1.8 for Project SDK:

Alternatively, if you (really :-)) want to build Bamboo from command line, you could

change working directory to Bamboo folder, and build it with Gradle:

$ gradle compileJava

3 Implementation of Dead Code Detection

This Section introduces the necessary knowledge about dead code detection, Bamboo,

Soot, and your task for this assignment.

3.1 Dead Code Detection

Dead code is the part of program which is unreachable (i.e., never be executed) or is

executed but whose result is never used in any other computation. Eliminating dead

code does not affect the program results, meanwhile, it can shrink program size and

improve the performance. Thus, dead code elimination is a common compiler

optimization. The hard part is finding dead code. You will implement an analysis to

detect dead code in Java programs by incorporating two data-flow analyses, i.e.,

constant propagation and live variable analysis. In this assignment, we focus on two

kinds of dead code, i.e., unreachable code and dead assignment.

3.1.1 Unreachable Code

Unreachable code in a program will never be executed. We consider two kinds of

unreachable code, control-flow unreachable code and unreachable branch, as

introduced below.

Control-flow Unreachable Code. In a method, if there exists no control-flow path to a

piece of code from the entry of the method, then the code is control-flow unreachable

code. An example is the code following return statements. Return statements are exits

of a method, so the code following them is unreachable. For example, the lines 4 and 5

in following code snippet are control-flow unreachable code:

5

1 int controlFlowUnreachable() {

2 int x = 1;

3 return x;

4 int z = 42; // control-flow unreachable code

5 foo(z); // control-flow unreachable code

6 }

Such code can be easily detected with control-flow graph (CFG) of the method. We just

need to traverse the CFG from the method entry node, and mark reachable nodes, then

the statements in other nodes are control-flow unreachable.

Unreachable Branch. For an if-statement, if its condition value is a constant, then one

of its two branches is certainly unreachable in any executions. We call such branch

unreachable branch, and code inside the branch is unreachable code. For example, in

the following code snippet, the condition of if-statement at line 3 is always true, so its

false-branch (line 6) is unreachable branch.

1 int unreachableBranch() {

2 int a = 1, b = 0, c;

3 if (a > b)

4 c = 2333;

5 else

6 c = 6666; // unreachable branch

7 return c;

8 }

To detect unreachable branches, we need to at first perform a constant propagation,

which tells us whether the condition values are constants, then during CFG traversals,

we can skip the corresponding unreachable branches.

3.1.2 Dead Assignment

A local variable that is assigned a value but is not read by any subsequent instruction is

referred to as a dead assignment, and assigned variable is dead variable (opposite to

live variable). Dead assignments do not affect program results, thus they can be

eliminated. For example, lines 3 and 5 in below are dead assignments.

1 int deadAssign() {

2 int a, b, c;

3 a = 0; // dead assignment

4 a = 1;

5 b = a * 2; // dead assignment

6 c = 3;

7 return c;

8 }

6

To detect dead assignments, we need to at first perform a live variable analysis. For an

assignment, if its LHS variable is a dead variable (i.e., not live), then we could mark it

as a dead assignment, except one case as discussed below.

There is a caveat about dead assignment. Sometimes an assignment x = expr cannot

be removed even x is a dead variable, as the RHS expression expr may have some

side-effects. For example, expr is a method call (x = foo()) which could have many

side-effects. For this issue, we have provided an API for you to check whether the RHS

expression of an assignment may have some side-effects (described in Section 3.4). If

so, then you should not report it as dead code for safety, even x is not live.

3.2 Scope

In this assignment, we deal with a subset of Java features. The scope for constant

propagation is the same as Assignment 1, except that this time we need to handle six

additional comparison operators for int, i.e., ==, !=, >=, >, <=, <, which are used in

the conditions of if-statement.

To keep control-flow graph (CFG) simple, we do not concern exceptions.

For branch statements, we only consider if-statement, and switch-case is not concerned.

Note that in Jimple IR, while-loop and for-loop are also converted to if-statement

(IfStmt). For example, this loop (written in Java):

while (a > b) {

 x = 0;

}

y = 1;

will be converted to Jimple IR like this:

label1:

 if a > b goto label2;

 goto label3;

label2:

 x = 0;

 goto label1;

label3:

 y = 1;

So, your implementation should be able to detect dead code related to loops, e.g., if a

and b are constants and a > b, then your analysis should report y = 1; as dead code.

3.3 Soot Classes You Need to Know

Bamboo uses Jimple IR from Soot, and this section introduces several Soot classes you

need to know for finishing this assignment. If you are interested in more details of Soot,

7

you could check its online documentation (https://github.com/Sable/soot/wiki).

3.3.1 Soot Classes for Constant Propagation

As mentioned in Section 3.2, the only difference between constant propagation of this

assignment and Assignment 1 is that you need to handle six more comparison operators.

In Soot, they correspond to six subclasses of soot.jimple.BinopExpr, i.e., EqExpr

(==), NeExpr (!=), GeExpr (>=), GtExpr (>), LeExpr (<=), and LtExpr (<).

3.3.2 Soot Classes for Live Variable Analysis

To implement live variable analysis, you need to obtain the variables that are defined

and used in a statement. soot.Unit provides two convenient APIs for this:

 List<ValueBox> getDefBoxes()

 List<ValueBox> getUseBoxes()

The defined/used soot.Values are wrapped in list of ValueBoxs (i.e., return values).

You could obtain the defined local variable of a Unit like this:

List<ValueBox> defBoxes = unit.getDefBoxes();

for (ValueBox vb : defBoxes) {

 Value value = vb.getValue();

 if (value instanceof Local) {

 Local var = (Local) value; // <- defined variable

 …

 }

}

The used variables can be obtained in similar way. If you are interested in more details

about Unit, Value, and ValueBox, please refer to these documentations:

https://github.com/Sable/soot/wiki/Fundamental-Soot-objects

https://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf (pages 34--37)

3.3.3 Soot Classes for Dead Code Detection

➢ soot.Body

This class represents Jimple bodies of the methods. A Body contains all Units in

the corresponding method, and you could iterate these Units through API

getUnits():

 Body body = …;

 for (Unit unit : body.getUnits()) {

 …

 }

https://github.com/Sable/soot/wiki
https://github.com/Sable/soot/wiki/Fundamental-Soot-objects
https://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf

8

➢ soot.toolkits.graph.DirectedGraph<Unit>

This interface is used to represent the control-flow graphs of the methods, and their

nodes are the Units of the methods. This interface is iterable, so you could iterate

all nodes (Units) over a control-flow graph like this:

DirectedGraph<Unit> cfg = …;

for (Unit unit : cfg) {

 …

}

When you traverse a CFG, you could obtain the successors of a Unit by API

List<Unit> getSuccsOf(Unit) like this:

for (Unit succ : cfg.getSuccsOf(unit)) {

 …

}

➢ soot.jimple.IfStmt (subclass of Unit)

This class represents if-statements in the program.

 soot.Value getCondition(): returns the condition expression. You will

need to use constant propagation to compute the value of the expression.

 Unit getTarget(): returns the first Unit of its true branch.

IfStmt does not provide API to directly obtain the first Unit of its false branch.

You could obtain it through the Body containing the IfStmt:

Unit falseBranch = body.getUnits().getSuccOf(ifStmt);

➢ soot.jimple.AssignStmt (subclass of Unit)

This class represents assignment (i.e., x = …;) in the program. You could obtain

its LHS variable through this API soot.Value getLeftOp(), for example:

AssignStmt assign = …;

Local l = (Local) assign.getLeftOp();

3.4 Bamboo Classes You Need to Know

To implement constant propagation, live variable analysis and dead code detection in

Bamboo, you need to know the following classes.

3.4.1 Bamboo Classes for Constant Propagation

➢ soot.Value

Soot provides this interface to represent the data in the program, which has many

subclasses. In this assignment, you only need to operate a few kinds of Values, as

9

shown in this partial class hierarchy:

Note that you need to handle six more comparison operators (all are the subclasses

of BinopExpr) than Assignment 1.

For other classes, please refer to the documentation of Assignment 1.

3.4.2 Bamboo Classes for Live Variable Analysis

➢ bamboo.dataflow.lattice.FlowSet<Local>

This interface represents the sets of live variables (soot.Local), i.e., the data

flows IN[s] and OUT[s] of each statement (Unit). You may use following APIs:

 boolean add(Local): adds a local variable to this set, returns if the add

operation changes the content of this set.

 boolean remove(Local): removes a local variable from this set, returns

if the remove operation changes the content of this set.

 FlowSet<Local> union(FlowSet<Local>): unions another set into this

set, returns this set.

 FlowSet<Local> intersect(FlowSet<Local>): intersects another set

and this set, returns this set.

 FlowSet<Local> duplicate(): returns a newly-created duplication of

this set.

 FlowSet<Local> setTo(FlowSet<Local>): sets the content of this set

to the same as the given one, returns this set.

➢ bamboo.dataflow.lattice.HashFlowSet<Local>

This class is the HashSet-based implementation of FlowSet. When you need to

create a new FlowSet, you could use constructor of HashFlowSet:

FlowSet<Local> set = new HashFlowSet<>();

10

➢ bamboo.dataflow.analysis.livevar.LiveVariableAnalysis

This class implements DataFlowAnalysis, and defines live variable analysis. It

is incomplete, and you need to finish it as explained in Section 3.5.

3.4.3 Bamboo Classes for Dead Code Detection

➢ bamboo.dataflow.analysis.deadcode.DeadCodeDetection

This class implements dead code detection analysis. It is incomplete, and you need

to finish it as explained in Section 3.5. We introduce some of its methods that you

may need to use or understand.

 Set<Unit> findDeadCode(Body b): starts dead code detection for the

given method Body, returns the set of detected dead code. It invokes some

several methods that you need to finish.

 Unit getEntry(DirectedGraph<Unit>): returns the method entry

Unit of the given CFG. You need this method for traversing the CFG.

 boolean mayHaveSideEffect(AssignStmt): returns if an assignment

may have some side-effects. You need this method to detect dead assignment.

➢ bamboo.dataflow.analysis.deadcode.DeadCodeDetection.EdgeSet

This class represents sets of control-flow edges. You will need this class to help

detect unreachable branches.

 void addEdge(Unit,Unit): adds a control-flow edge (represented by the

given source node and target node) to this set.

 boolean containsEdge(Unit,Unit): returns if this set contains the

given control-flow edge (represented by its source node and target node)

➢ bamboo.dataflow.analysis.deadcode.Main

This is the main class of dead code detection, which performs the analysis for input

Java program. We introduce how to run this class in Section 3.5.

3.5 Your Task [Important!]

In this assignment, you will need to finish three classes:

1. bamboo.dataflow.analysis.constprop.ConstantPropagation

2. bamboo.dataflow.analysis.livevar.LiveVariableAnalysis

3. bamboo.dataflow.analysis.deadcode.DeadCodeDetection

The details are given below.

➢ bamboo.dataflow.analysis.constprop.ConstantPropagation

Same as Assignment 1, you need to finish the following four APIs:

 FlowMap meet(FlowMap,FlowMap)

11

 Value meetValue(Value,Value)

 boolean transfer(Unit,FlowMap,FlowMap)

 Value computeValue(soot.Value,FlowMap)

The implementation for the first three APIs is the same as Assignment 1. As for

computeValue(), you need to handle additional six comparison operators as

mentioned in Section 3.2. So you could copy the relevant code from your Assignment

1, and then add code for handling comparison operators to computeValue().

• Hint: the results of comparison expressions should be boolean value. For

convenience, when the result is constant, you could use 1, i.e.,

Value.makeConstant(1), to represent true, and 0 to represent false.

➢ bamboo.dataflow.analysis.livevar.LiveVariableAnalysis

You need to finish four APIs, which correspond to four parts of live variable analysis

algorithm as shown below:

Note that live variable analysis is a backward analysis. Bamboo implements backward

analysis by performing forward analysis on a reversed control-flow graph (reversed

CFG). In a reversed CFG, all control-flow edges of the original CFG are reversed, i.e.,

entry/exit nodes and IN/OUT flows of original CFG are swapped in the reversed one.

Thus, for live variable analysis, entry node in Bamboo corresponds to exit node in the

algorithm, and IN (OUT) flows in Bamboo correspond to OUT (IN) flows in the

algorithm.

 FlowSet<Local> getEntryInitialFlow(Unit)

This function returns the initial data flow for entry nodes.

 FlowSet<Local> newInitialFlow()

This function returns the initial data flow for non-entry nodes.

 FlowSet<Local> meet(FlowSet<Local>,FlowSet<Local>)

This is the meet function of live variable analysis, which meets two

12

FlowSets of local variable and returns the resulting FlowSet. This function

is used to handle control-flow influences.

 boolean transfer(Unit,FlowSet<Local>,FlowSet<Local>)

This is the transfer function of live variable analysis.

➢ bamboo.dataflow.analysis.deadcode.DeadCodeDetection

You need to finish three methods to detect the dead code described in Section 3.1.

 EdgeSet findUnreachableBranches(Body,DirectedGraph<Unit>)

You need to iterate the Units of given CFG to detect unreachable branches of

if-statements (IfStmt). If the condition value of an if-statement is always

true, then you should add false branch, i.e., the edge from the if-statement

(IfStmt) to the first Unit of the false branch, to the resulting EdgeSet.

Similarly, if the condition value is always false, add an edge for true branch.

❖ Hint 1: there is a variable constantMap in this method, which holds the

map from each Unit in the method to the FlowMap, i.e., the constant

propagation result at the Unit.

❖ Hint 2: you could use ConstantPropagtion.computeValue() to

compute the value for condition expression of if-statements. Since

computeValue() is an instance method, and ConstantPropagation

uses singleton pattern (the only instance can be obtained by calling v()),

you could call computeValue() in this way:

ConstantPropagation.v().computeValue(…);

 Set<Unit> findUnreachableCode(DirectedGraph<Unit>,EdgeSet)

You need to iterate the Units in the given CFG and detect unreachable code

by traversing the CFG from entry node (pointed by variable entry). During

the traversal, you should skip unreachable branches in given EdgeSet.

13

Here we further explain the role of EdgeSet using the example in the above

figure. In this example, the false branch is an unreachable branch as x is

always larger than y. So, we should add edge 4→7 to the resulting EdgeSet

of findUnreachableBranches(). Then, when we traverse the CFG to detect

unreachable code in findUnreachableCode(), we could skip edge 4→7, and

naturally discover that statements with labels 7 and 8 are unreachable from

the entry node.

❖ Hint: you could examine the control-flow graph of each method in folders

under sootOutput/, to help debug and test. The CFGs are stored as .dot

files, and can be visualized by Graphviz (https://graphviz.org/download/).

 Set<Unit> findDeadAssignments(Body)

You need to iterate the Units in the given Body and detect dead assignments

(AssignStmt) based on the results of live variable analysis.

❖ Hint 1: there is a variable liveVarMap in this method, which holds the

map from each Unit in the method to a FlowSet<Local>, i.e., the set

of live variables at the Unit.

❖ Hint 2: Do not mark the statements that may have side effects as dead

assignment. Use mayHaveSideEffect() to ensure this.

We have provided code skeletons for the all above APIs, and your task is to fill the part

with comment “TODO – finish me”.

3.6 Run Dead Code Detection as an Application

As mentioned in Section 3.4, the main class of dead code detection is

bamboo.dataflow.analysis.deadcode.Main

The format of its arguments is:

-cp <CLASS_PATH> <CLASS_NAME>

<CLASS_PATH> is the class path, and <CLASS_NAME> is the name of the input class to

be analyzed. Bamboo locates input class from given class path. For example, to analyze

the ControlFlowUnreachable.java in class path analyzed/, just configure

program arguments in IntelliJ IDEA as follows:

https://graphviz.org/download/

14

For each method of input class, Bamboo performs constant propagation, live variable

analysis, and dead code detection in order, and outputs the results of every analysis for

each method. You can use this information to help develop and debug. We encourage

you to write some Java classes and analyze them.

Of course, you could also run the analysis using Gradle, with the following command:

$ gradle run --args=”-cp <CLASS_PATH> <CLASS_NAME>”

3.7 Test Dead Code Detection with JUnit

To make testing convenient, we have prepared some Java classes as test inputs in folder

analyzed/. Every class has an associated file named *-expected.txt, which

contains the expected results of dead code detection (in form of line numbers and the

corresponding Jimple Units) for some methods. You could analyze these test inputs by

running test class (powered by JUnit):

bamboo.dataflow.analysis.deadcode.DCDTest

This test class analyzes all provided Java classes in analyzed/, and compares the

given analysis results to the expected results. If your implementation of dead code

detection is correct, the tests will pass, otherwise it fails and outputs the differences

between expected and given results.

Again, you could run tests with Gradle, just type:

$ gradle clean test

This command will delete the build directory, rebuild Bamboo, and run tests.

4 General Requirements

• In this assignment, your only goal is correctness. Efficiency is not your concern.

• DO NOT distribute the assignment package to any others.

• Last but not least, do not plagiarize. The work must be all your own!

5 Submission of Assignment

Your submission should be a zip file, which contains your implementation of

• ConstantPropagation.java

• LiveVariableAnalysis.java

• DeadCodeDetection.java

The naming convention is of the zip file is:

<STUDENT_ID>-<NAME>-A2.zip

Please submit your assignment through 教学立方.

15

6 Grading

The points will be allocated for correctness. We will use your submission to analyze the

given test files from the analyzed/ directory, as well as other tests of our own, and

compare your output to that of our solution.

Good luck!

