
1 

 

Programming Assignment 5: 

Context-Sensitive Pointer Analysis 

Course “Static Program Analysis” @Nanjing University 

Assignments Designed by Tian Tan and Yue Li 
Due: 23:00, Friday, June 19, 2020 

1 Goal 

In this programming assignment, you will implement whole-program context-sensitive 

pointer analysis for Java based on Bamboo. Specifically, we have provided a context-

sensitive pointer analysis framework in Bamboo, and you need to implement three 

kinds of common context sensitivity variants introduced in Lecture 12. To show the 

usefulness of context sensitivity, we provide an interprocedural constant propagation, 

which uses the call graph constructed by your context-sensitive pointer analysis. If your 

implementation is correct, you can observe that context-sensitive pointer analysis can 

build a more precise call graph than class hierarchy analysis (CHA) and context-

insensitive pointer analysis (CIPTA). Consequently, interprocedural constant 

propagation based on pointer analysis achieves better precision than CHA and CIPTA 

(please see Section 3.6 for more details). Again, you only need to consider a small 

subset of Java features. 

2 Introduction to Bamboo 

Bamboo is a static program analysis framework developed by the two instructors of this 

course, and it supports multiple static analyses (e.g., data-flow analysis, pointer analysis, 

etc.) for Java. Bamboo leverages Soot as front-end to parse Java programs and construct 

IRs (Jimple). In this assignment, we include a context-sensitive pointer analysis 

framework. In addition, we also include an interprocedural data-flow analysis 

framework and an interprocedural constant propagation to demonstrate the usefulness 

of context sensitivity. 

2.1 Content of Assignment 

The content resides in folder bamboo/, which includes: 

• analyzed/: The folder containing test input files. 

• libs/: The folder containing Soot classes with its dependencies. 

• src/: The folder containing the source code of Bamboo. You will need to 

modify six files in this folder to finish this assignment. 

• test/: The folder containing test classes. 

• build.gradle: The Gradle build script for Bamboo. 

• copyright.txt: The copyright of Bamboo. 



2 

 

2.2 Setup Instructions (Same as Assignment 1) 

Bamboo is written in Java, so it is cross-platform. To build and run Bamboo, you need 

to have Java 8 installed on your system (other Java versions are currently not supported). 

You could download the Java Development Kit 8 from the following link: 

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html  

 

We highly recommend you to finish this (and the following) assignment(s) with IntelliJ 

IDEA. Given the Gradle build script, it is very easy to import Bamboo to IntelliJ IDEA, 

as follows. 

 

Step 1 

Download IntelliJ IDEA from JetBrains (http://www.jetbrains.com/idea/download/)  

 

Step 2 

Start to import a project 

 

(Note: if you have already used IntelliJ IDEA, and opened some projects, then you 

could choose File > New > Project from Existing Sources… to open the same dialog 

for the next step.) 

 

Step 3 

Select the bamboo/ directory, then click “OK”. 

 

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
http://www.jetbrains.com/idea/download/


3 

 

Step 4 

Import project from external model Gradle, then click “Finish”. 

 

That’s it! You may wait a moment for importing Bamboo. After that, some Gradle-

related files/folders will be generated in Bamboo directory, and you can ignore them. 

 

Step 5 

Since Bamboo is imported from Gradle model, IntelliJ IDEA always build and run it 

with Gradle, which makes it a bit slower and always output some annoying Gradle-

related messages: 

 

Thus, we suggest you disable the Gradle in IntelliJ IDEA. Just go to File > Settings, 

and change the build and run tool from Gradle to IntelliJ IDEA as shown: 

 



4 

 

Notice: If your system has multiple JDKs, make sure that IntelliJ IDEA uses Java 8 

(otherwise you may experience NullPointerException thrown by Soot). To 

configure this, go to File > Project Sturcture…, and select 1.8 for Project SDK: 

 
 

 

Alternatively, if you (really :-)) want to build Bamboo from command line, you could 

change working directory to Bamboo folder, and build it with Gradle: 

$ gradle compileJava 

3 Implementation of Context-Sensitive Pointer Analysis 

This Section introduces the necessary knowledge about Bamboo and your task for this 

assignment. Note that Soot’s Jimple IR is sophisticated and contains rich information, 

however, many of them are irrelevant to pointer analysis, and it is not that convenient 

to extract pointer-relevant information. To ease the implementation of pointer analysis, 

we have designed and implemented a new pointer analysis IR in Bamboo, which 

provides convenient APIs to obtain pointer-relevant information and excludes 

unnecessary details about the program statements. Our pointer analysis IR provides all 

information you need to implement pointer analysis, so in this assignment, you do not 

need to touch any Soot classes. 

3.1 Scope 

In this assignment, you will select contexts for method invocations and heap allocations, 

i.e., method contexts and heap contexts. You need to select contexts for both instance 

and static methods. We will introduce how to select contexts for static methods later. 

3.2 Bamboo Classes You Need to Know 

To implement context sensitivity variants in Bamboo, you need to know the following 

classes. 

 

➢ bamboo.pta.analysis.context.Context 

This interface represents contexts in context-sensitive pointer analysis. 

 int depth(): returns the depth, i.e., the number of elements of this context. 

 Object element(int i): returns the i-th element of this context. The 



5 

 

indexes start from 1 (not 0). 

This interface has three implementations, corresponding to the contexts with depth 

of 0, 1, and 2, as shown below. 

 

 

➢ bamboo.pta.analysis.context.DefaultContext 

This class represents the default or empty context. This context is used for the entry 

methods. We implement it as an Enumeration, so that it can support singleton 

pattern. You could obtain the context instance via accessing the constant: 

DefaultContext.INSTANCE 

 

➢ bamboo.pta.analysis.context.OneContext<T> 

This class represents contexts with 1 element, where T is the type of the element. 

 OneContext(T): the constructor of this class, and its parameter is the 

context element. 

For example, you could construct a context for 1-call-site sensitivity and access its 

element in this way: 

CallSite cs = … 

OneContext<CallSite> ctx = new OneContext<>(cs); 

… 

CallSite e = ctx.element(1); 

 

➢ bamboo.pta.analysis.context.TwoContext<T> 

This class represents contexts with 2 elements, where T is the type of the elements. 

 TwoContext(T,T): the constructor of this class, and its parameter is the 

context elements. 

For example, you could construct a context for 2-object sensitivity and access its 

second element in this way: 

Obj o1 = … 

Obj o2 = … 

TwoContext<Obj> ctx = new TwoContext<>(o1, o2); 

… 

Obj e2 = ctx.element(2); 

 

➢ bamboo.pta.element.CallSite 

This class represents call sites, which are also the context elements for call-site 

sensitivity. 



6 

 

 

➢ bamboo.pta.element.Obj 

This class represents abstract objects in pointer analysis, and they are also the 

context elements for object sensitivity. 

 Method getContainerMethod(): returns the method containing the 

allocation site of this method. 

 

➢ bamboo.pta.element.Type 

This class represents types, which are also the context elements for type sensitivity. 

 

➢ bamboo.pta.element.Method 

This class represents methods. 

 Type getClassType(): returns the class type which contains the 

declaration of this method. 

 

➢ bamboo.pta.analysis.data.CSCallSite 

This class represents context-sensitive (C.S.) call sites in pointer analysis. Each 

C.S. call site consists of a context and a call site. 

 Context getContext(): returns the context. 

 CallSite getCallSite(): returns the call site. 

 

➢ bamboo.pta.analysis.data.CSMethod 

This class represents context-sensitive methods in pointer analysis. Each C.S. 

method consists of a context and a method. 

 Context getContext(): returns the context. 

 Method getMethod(): returns the method. 

 

➢ bamboo.pta.analysis.data.CSObj 

This class represents context-sensitive (C.S.) objects in pointer analysis. Each 

C.S. object consists of a (heap) context and an object. 

 Context getContext(): returns the heap context. 

 Obj getObject(): returns the object. 

 

➢ bamboo.pta.analysis.context.ContextSelector 

This is the interface between concrete context sensitivity variants (e.g., call-site 

sensitivity and object sensitivity) and context-sensitive pointer analysis framework. 

It has 4 APIs, which select contexts for entry methods (e.g., main method), instance 

methods, static methods, and heap objects, respectively. You could implement 

context sensitivity variants by implementing this interface. 

 Context getDefaultContext(): returns the context for entry methods. 

This API has default implementation, so you do not need to implement it. 



7 

 

 Context selectContext(CSCallSite,Method): selects contexts for 

static methods. This API is called when pointer analysis handles static call. 

The first parameter is the context-sensitive call site, which contains the caller 

context and the call site. The second parameter is the callee. 

 Context selectContext(CSCallSite,CSObj,Method): selects 

contexts for instance methods. This API is called when pointer analysis 

handles instance call. The first parameter is the context-sensitive call site, 

which contains the caller context and the call site. The second parameter is the 

receiver object with its heap context. The third parameter is the callee. 

 Context selectHeapContext(CSMethod,Object): selects the heap 

contexts for abstract objects. This API is called when pointer analysis handles 

object allocation. The first parameter is the context-sensitive method, which 

contains the allocation site of the object, and the second parameter is the 

allocation site. 

Currently, Bamboo provides 7 context sensitivity variants, at shown below: 

 

ContextInsensitiveSelector is complete and the other six selectors are not. 

You will need to finish the six context selectors in this assignment, as explained in 

Section 3.3.  

 

➢ bamboo.pta.Main 

This is the main class of context-sensitive pointer analysis, which performs the 

analysis for input Java program. We introduce how to run this class in Section 3.4. 

3.3 Your Task [Important!] 

In this assignment, you need to finish three APIs (two selectContext(…) and one 

selectHeapContext(…)) of the six context selectors. Specifically, you will 

implement three common context sensitivity variants introduced in Lecture 12, i.e., 

call-site sensitivity, object sensitivity, and type sensitivity. For each variant, you need 

to finish two selectors with context limits of 1 and 2, respectively, (i.e., k-limiting 

context abstraction with k=1 and k=2). You also need to select heap contexts. For each 

k-limiting context selector, the limit of the heap contexts is k-1, e.g., for 1-call-site 

sensitivity, the limit of heap context is 0 (essentially no heap context), and for 2-call-



8 

 

site sensitivity, the limit of heap context is 1. 

 

To select method contexts, you need to implement 

• Context selectContext(CSCallSite,Method) 

• Context selectContext(CSCallSite,CSObj,Method) 

of each selector, and to select heap contexts, you need to implement 

• Context selectHeapContext(CSMethod,Object) 

Below are the six context selectors you need to finish. 

 

➢ bamboo.pta.analysis.context.OneCallSelector 

This class implements 1-call-site sensitivity 

 

➢ bamboo.pta.analysis.context.OneObjectSelector 

This class implements 1-object sensitivity 

 

➢ bamboo.pta.analysis.context.OneTypeSelector 

This class implements 1-type sensitivity 

 

➢ bamboo.pta.analysis.context.TwoCallSelector 

This class implements 2-call-site sensitivity 

 

➢ bamboo.pta.analysis.context.TwoObjectSelector 

This class implements 2-object sensitivity 

 

➢ bamboo.pta.analysis.context.TwoTypeSelector 

This class implements 2-type sensitivity 

 

❖ Hint 1: For how to implement call-site, object and type sensitivity, please refer to 

pages 113, 142, and 169 of the slides of Lecture 12 (on the course website). 

❖ Hint 2: In call-site sensitivity, the context selection for static methods are the same 

as instance methods, i.e., at a static call, we add the call site to the caller context to 

compose the callee context. In object and type sensitivity, the convention of static 

methods is to directly use the caller context as the callee context. You should select 

contexts for static methods as described above. 

❖ Hint 3: Note that k (for k-limiting context abstraction) is the upper bound of length 

of each context, so when k=2, you still need DefaultContext and OneContext 

for the contexts whose length is less than 2. 

 

We have provided code skeletons for the above six context selectors, and your task is 

to fill the part with comment “TODO – finish me”. 



9 

 

3.4 Run Context-Sensitive Pointer Analysis as an Application 

As mentioned in Section 3.2, the main class of pointer analysis is 

bamboo.pta.Main 

The format of its arguments is: 

-cp <CLASS_PATH> -p wjtp.pta cs:<CONTEXT_SELECTOR> <CLASS_NAME> 

<CLASS_PATH> is the class path, <CONTEXT_SELECTOR> is the name of the context 

selector. Bamboo supports 7 context sensitivity variants (selectors): 

• ci: context insensitivity (complete and ready to use) 

• 1-call: 1-call-site sensitivity 

• 1-obj: 1-object sensitivity 

• 1-type: 1-type sensitivity 

• 2-call: 2-call sensitivity 

• 2-obj: 2-object sensitivity 

• 2-type: 2-type sensitivity 

<CLASS_NAME> is the name of the input class to be analyzed. Bamboo locates input 

class from given class path. For example, to analyze the OneCall.java in class path 

analyzed/ by 1-call-site sensitive pointer analysis, just configure program arguments 

in IntelliJ IDEA as follows: 

For each input program, Bamboo performs pointer analysis, and outputs the process of 

points-to set propagation and the analysis results, including (1) reachable methods; (2) 

call graph edges; (3) points-to sets of all variables; (4) points-to sets of all instance 

fields. Note that in context-sensitive pointer analysis, the program elements are 

associated with their contexts. For example, a context-sensitive variable in 1-call-site 

sensitive pointer analysis is of format: 

[<class>(L<#line>):<callsite>]:<method>/<name> 

where […] is the context, of which <class> is the class containing the call site, 

L<#line> is the line number of the call site, and <callsite> is the string 

representation of the call site. Besides, <method> is the method which the variable is 

declared in, and <name> is the variable name. You can use this information to help 

develop and debug. We encourage you to write some Java classes and analyze them. 

 

Note that in this assignment package, the initial implementations of the six selectors all 

return null, so if you directly analyze some input classes, NullPointerException 

will be thrown. The exception will disappear after you implement them correctly.  



10 

 

Of course, you could also run the analysis using Gradle, with the following command: 

$ gradle run --args=”-cp <CLASS_PATH> -p wjtp.pta 

cs:<CONTEXT_SELECTOR> <CLASS_NAME>” 

3.5 Test Context-Sensitive Pointer Analysis with JUnit 

To make testing convenient, we have prepared some Java classes as test inputs in folder 

analyzed/. Every class has an associated file named *-expected.txt, which 

contains the expected results of context-sensitive pointer analysis, i.e., the points-to sets 

of all variables and instance fields. You could analyze these test inputs by running test 

class (powered by JUnit): 

bamboo.pta.PTATest 

This test class analyzes all provided Java classes in analyzed/, and compares the 

given analysis results to the expected results. If your implementation of pointer analysis 

is correct, the tests will pass, otherwise it fails and outputs the differences between 

expected and given results. 

 

Note that in this assignment, we have put all test cases in the package. So if your 

implementation passes all test cases, you could get full marks for this assignment. 

 

Again, you could run tests with Gradle, just type: 

$ gradle clean test 

This command will delete the build directory, rebuild Bamboo, and run tests. 

3.6 Run Interprocedural Constant Propagation 

As mentioned in Sections 1 and 2, to demonstrate the usefulness of context-sensitive 

pointer analysis (it can build more precise call graph than CHA and context-insensitive 

pointer analysis), this assignment contains an interprocedural constant propagation, 

which leverages your implementation of context sensitivity variants (context selectors) 

to build call graph, interprocedural control-flow graph (ICFG), and performs constant 

propagation on the ICFG. The main class of the analysis is: 

bamboo.dataflow.analysis.constprop.CSPTAMain 

The format of its arguments is: 

-cp <CLASS_PATH> -p wjtp.pta cs:<CONTEXT_SELECTOR> <CLASS_NAME> 

We also provide a test case OneCall.java in analyzed/, which comes from Lecture 

11. After you finish the context selectors, we recommend you run both pointer analyses 

based and CHA based constant propagation for the test case, to observe their analysis 

results and precision differences. 

 

Note that before you run intra- and interprocedural constant propagation, please replace 



11 

 

bamboo.dataflow.analysis.constprop.ConstantPropagation.java in 

this Assignment package by your implementation for Assignment 2. 

4 General Requirements 

• In this assignment, your only goal is correctness. Efficiency is not your concern. 

• DO NOT distribute the assignment package to any others. 

• Last but not least, do not plagiarize. The work must be all your own! 

5 Submission of Assignment 

Your submission should be a zip file, which contains your implementation of 

• OneCallSelector.java 

• OneObjectSelector.java 

• OneTypeSelector.java 

• TwoCallSelector.java 

• TwoObjectSelector.java 

• TwoTypeSelector.java 

The naming convention is of the zip file is: 

<STUDENT_ID>-<NAME>-A5.zip 

Please submit your assignment through 教学立方. 

6 Grading 

The points will be allocated for correctness. We will use your submission to analyze the 

given test files from the analyzed/ directory, as well as other tests of our own, and 

compare your output to that of our solution. 

 

Good luck! 


