Static Program Analysis

Yue LI and Tian Tan

“ 2020 Spring

Static Program Analysis

Static Analysis for
Security

Nanjing University

Tian Tan

2020

Security

Achieving some goals in the presence of adversaries

Tian Tan @ Nanjing University

Security

Achieving some goals in the presence of adversaries

Physical World

* Goals
* Personal safety
* Property safety

e Adversaries
e Thieves
e Criminals

Security

Achieving some goals in the presence of adversaries

Physical World Cyber World

* Goals * Goals
* Personal safety * Dependability
* Property safety * Data safety

* Adversaries * Adversaries
* Thieves * Crackers

e Criminals e Cyber attackers

Computer Security

Becomes increasingly important nowadays

Computer Security

Becomes increasingly important nowadays

\ [\u’(,\\cx\ucaw‘: Web Copppit, s
ConlX

Srnationic
{pforredl e

* Pro otoce (1\\a

p £
“)fﬂl . San db

Anajyg;
lcal\mn“nof}] sis S;(/(.

Tian Tan @ Nanjing University

Computer Security

Becomes increasingly important nowadays

. UC&UO“ \\C\ Co "‘}"4(or
. Data

“‘ framerL e €5 maU?X\, el

e S o “\]
Jection
&m?lrew G \)wn" : (\\“\‘\\C\\ \F O -

“(‘k“o ' ””Hu . >
51 5 ‘ '
BU\“C‘ Flow bobe }(J;Y ‘

""""" CCC "' AmA
Yr g)’ﬁcm. T o
Causes of explonted vulnerabllltles in 2013-2019*

* Injection errors (No. 1), 11821, 4.6/day
* Information leaks (No. 4), 5086, 2.0/day

*National Vulnerability Database, https://nvd.nist.gov/

Tian Tan @ Nanjing University

https://nvd.nist.gov/

Computer Security

Becomes increasingly important nowadays

,M

/\N
2 A Y r me’m : "“," wiion
Causes of exploited vulnerabllltles in 2013-2019*
* Injection errors (No. 1), 11821, 4.6/day

* Information leaks (No. 4), 5086, 2.0/day

Pynami S \"] W

*National Vulnerability Database, https://nvd.nist.gov/

Tian Tan @ Nanjing University

https://nvd.nist.gov/

Contents

= -

Information Flow Security
Confidentiality and Integrity
Explicit Flows and Covert Channels

Taint Analysis

10

pwoN R

Information Flow Security

Confidentiality and Integrity
Explicit Flows and Covert Channels

Taint Analysis

Tian Tan @ Nanjing University

11

Information Flow: An Example

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

Account software-analysis@nju

Password |eessesss

sensitive
Log in via mobile number

Tian Tan @ Nanjing University

12

Information Flow: An Example

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

—‘——
-
—"—
-
-
-
—’——
-
-
———————————
-
-
-

Account software-analysis@nju -

Password |eeceeee e -7 (%)

sensitive
Log in via mobile number

Tian Tan @ Nanjing University 13

Information Flow: An Example

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

-
———————————
-
-
-

Account software-analysis@nju -

Password sesssee -7

sensitive
Log in via mobile number

Tian Tan @ Nanjing University 14

Information Flow: An Example

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

-

-
-

Account software-analysis@nju -

7’
Password -------I: -------- -

===
=
~~~~~
-
-
~
~

sensitive N
Log in via mobile number \

~

Tian Tan @ Nanjing University 15




Information Flow: An Example

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

________
-
-

Account software-analysis@nju -

7’
Password -------I: -------- -

-——=
S———
-
-~
~
~

sensitive N
Log in via mobile number \

Tian Tan @ Nanjing University 16



Information Flow Security: Motivation

w1126 @ iOr 2 @)

X

Log in via WeChat ID/Email/
QQ ID

_________
-~
R
7’

Account software-analysis@nju -

7’
Password sesssse I::-____——"

-_———
-
~~~~~
-
-~
-~
-~
-~

sensitive N
Log in via mobile number \

Prevent unwanted information flow
Protect information security 17

Access Control vs.
Information Flow Security

e Access control (a standard way to protect sensitive data)

* Checks if the program has the rights/permissions to access
certain information

 Concerns how information is accessed

Tian Tan @ Nanjing University 18

Access Control vs.
Information Flow Security

e Access control (a standard way to protect sensitive data)

* Checks if the program has the rights/permissions to access
certain information

 Concerns how information is accessed
What happens after that?

Tian Tan @ Nanjing University 19

Access Control vs.
Information Flow Security

e Access control (a standard way to protect sensitive data)

* Checks if the program has the rights/permissions to access
certain information

 Concerns how information is accessed
What happens after that?

* Information flow security (end-to-end)

* Tracks how information flows through the program to make
sure that the program handles the information securely

e Concerns how information is propagated

Tian Tan @ Nanjing University 20

Access Control vs.
Information Flow Security

e Access control (a standard way to protect sensitive data)

* Checks if the program has the rights/permissions to access
certain information

 Concerns how information is accessed
What happens after that?

* Information flow security (end-to-end)

* Tracks how information flows through the program to make
sure that the program handles the information securely

e Concerns how information is propagated

"A practical system needs both access and flow control to satisfy all security requirements."
— D. Denning, 1976

21

Information Flow™

* Information flow: if the information in variable X is
transferred to variable y, then there is information
flowx — y

*Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

22

Information Flow™

* Information flow: if the information in variable X is
transferred to variable y, then there is information
flowx — y

* Examples @\/\/@

<
Il
X
¢
c o
Il '_h Il
1l
&

*Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

23

Information Flow™

* Information flow: if the information in variable X is
transferred to variable y, then there is information
flowx — y

Looks like pointer analysis?
’ Examples @\/V@ We will see ...

<
!
X
-
< T o
(| I T |
S I X
—h\?Jh

|

*Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

24

Information Flow Security

Connects information flow to security
* Classifies program variables into different security levels

* Specifies permissible flows between these levels, i.e.,
information flow policy

25

Security Levels (Classes)

* The most basic model is two-level policy, i.e., a
variable is classified into one of two security levels:

1. H, meaning high security, secret information
2. L, meaning low security, public observable information

h = getPassword(); // h is high security
broadcast(l); // 1 is low security

Tian Tan @ Nanjing University 26

Security Levels (Classes)

* The most basic model is two-level policy, i.e., a
variable is classified into one of two security levels:

1. H, meaning high security, secret information
2. L, meaning low security, public observable information

« h = getPassword(); // h is high security

* broadcast(l); // 1 is low security
e Security levels can be modeled as lattice* H
e L<H
L

*Dorothy E. Denning, “A Lattice Model of Secure Information Flow”. CACM 1976.

Tian Tan @ Nanjing University 27

More Complicated Security Levels

e China classification * A (possible) business
classification

. Top secret
Top secret (4t %%) / \
Department A , Department B
Confidential (7[:)‘[49'3{\') top secret top secret
A [Secret [
o o hY /'A‘_\I / \
Classified @U‘fﬁ) Department A Department B
4 secret secret

Unclassified (/A FF) \ /

Unclassified

Information Flow Policy

e Restricts how information flows between different
security levels

29

Information Flow Policy

e Restricts how information flows between different
security levels

* Noninterference policy*

* Requires the information of high variables have no effect
on (i.e., should not interfere with) the information of
low variables

* Intuitively, you should not be able to conclude anything
about high information by observing low variables

*J. A. Goguen and J. Meseguer, “Security policies and security models”. S&P 1982.

30

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

vV * Xy = Yy
Vex =Yy,

Tian Tan @ Nanjing University

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

vV * Xy = Yy
Vex =Yy,
2 XL =Y,

Tian Tan @ Nanjing University

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

vV * Xy = Yy
Vex =Yy,
XX =Yy

2 Xy =Y,

Tian Tan @ Nanjing University

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

vV * Xy = Yy
Vexg =y,
X *XL = Yy
Viexy =y

2exX =y + zy

Tian Tan @ Nanjing University

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

vV * Xy = Yy
Vexg =y,
X *XL = Yy
Viexy =y

Xex =Yy +z

Tian Tan @ Nanjing University

Noninterference

e Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

v * Xy
v * X,
X * X,
Ve X,
X * X,

yH H H
yL -
yH o= .
YL : :
Yo + 4y

Ensures that information flows x
only upwards in the lattice

Tian Tan @ Nanjing University 36

Contents

1. Information Flow Security |
2. Confidentiality and Integrity
3. Explicit Flows and Covert Channels
4. Taint Analysis

Tian Tan @ Nanjing University

* Confidentiality
* Prevent secret information from being leaked

g

Tian Tan @ Nanjing University

38

* Confidentiality
* Prevent secret information from being leaked

g

Information flow security from another perspective

* Integrity
* Prevent untrusted information from corrupting
(trusted) critical information

g

Tian Tan @ Nanjing University

39

Integrity

* Prevent untrusted information from corrupting
(trusted) critical information?

x = readInput(); // untrusted

cmd = "..." 4+ X,
execute(cmd); // critical (trusted)

1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.

Tian Tan @ Nanjing University 40

Integrity

* Prevent untrusted information from corrupting
(trusted) critical information?

x = readInput(); // untrusted

cmd = "..." 4+ X,
execute(emd); // critical (trusted)
* Injection errors (#1 cause of vulnerabilities in 2013-20192)
e Command injection
* SQL injection
e XSS attacks

1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.
2. National Vulnerability Database, https://nvd.nist.gov/

Tian Tan @ Nanjing University 41

https://nvd.nist.gov/

Confidentiality and Integrity

Confidentiality Integrity

e Security classification * Security classification
e Secret (High secret) H e Trusted (High integrity) L
e Public (Low secret)) e Untrusted (Low integrity) H
FQ -~ FQ ~
42 @
secret public trusted untrusted
* Read protection * Write protection

Tian Tan @ Nanjing University 42

Integrity, Broad Definition

* To ensure the correctness, completeness, and
consistency of data

 Correctness

e E.g., for information flow integrity, the (trusted) critical data
should not be corrupted by untrusted data

 Completeness
e E.g., a database system should store all data completely

* Consistency

* E.g., afile transfer system should ensure that the file contents
of both ends (sender and receiver) are identical

43

Contents

= - Z

Information Flow Security
Confidentiality and Integrity
Explicit Flows and Covert Channels

Taint Analysis

44

How Does Information Flow

*Xy = Yu
XL = Yy
XL =YL+ 4y

We have seen how information flows through direct copying.
This is called explicit flow.

Tian Tan @ Nanjing University

45

How Does Information Flow

*Xy = Yu
XL =YL+ 4y

We have seen how information flows through direct copying.
This is called explicit flow.

Is this the only way of information flow?

Tian Tan @ Nanjing University

46

Does Secret Information Leak?

secrety = getSecret();
if (secrety < 0)
publik, = 1;
else
publik, = @;

Tian Tan @ Nanjing University

47

Does Secret Information Leak?

secrety = getSecret();

if (secrety < 0)
publik, = 1;

else Leak, we can conclude if secret is
publik, = © negative or not by observing publik

e

Tian Tan @ Nanjing University

48

Implicit Flows

secrety = getSecret();
if (secrety < 0)
publik, = 1;

else Leak, we can conclude if secret is

publik; = @; negative or not by observing publik

* This kind of information flow is called implicit flow,
which may arise when the control flow is affected by
secret information.

* Any differences in side effects under secret control
encode information about the control, which may be
publicly observable and leak secret information.

Tian Tan @ Nanjing University

Implicit Flows

e €0
/77‘92‘/'0 fé@/x,.
secrety = getSecret(); /7,70 //70,&
if (secrety < 0) Ws> ™ OF
publik, = 1;
else

Leak, we can conclude if secret is
publik; = @; negative or not by observing publik

* This kind of information flow is called implicit flow,
which may arise when the control flow is affected by
secret information.

* Any differences in side effects under secret control
encode information about the control, which may be
publicly observable and leak secret information.

50

?

Does Secret Information Leak?

while (secrety < 0) { .. };

51

Does Secret Information Leak?

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

52

‘?

~

Does Secret Information

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secrety < 0)
for (int 1 = 0; i < 1000000; ++i) { .. };

Tian Tan @ Nanjing University

Leak?

53

Does Secret Information

while (secrety < 0) { .. };
Leak, we can conclude that secret is negative
if the program does not terminate
if (secrety < 0)
for (int 1 = 0; i < 1000000; ++i) { .. };

Leak, we can conclude that secret is negative
if the program execution spends more time

Leak?

54

Y

Does Secret Information

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secrety < 0)

for (int 1 = 0; i < 1000000; ++i) { .. };
Leak, we can conclude that secret is negative
if the program execution spends more time

if (secrety < 0)
throw new Exception("..");

Tian Tan @ Nanjing University

Leak?

55

Does Secret Information Leak?

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secrety < 0)

for (int 1 = 0; i < 1000000; ++i) { .. };
Leak, we can conclude that secret is negative
if the program execution spends more time

if (secrety < 0) Leak, we can conclude that secret is
throw new Exception(".."); negative if we observe the exception

Tian Tan @ Nanjing University 56

Does Secret Information Leak?

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secrety < 0)
for (int 1 = 0; i < 1000000; ++i) { .. };

Leak, we can conclude that secret is negative
if the program execution spends more time

if (secrety < 0) Leak, we can conclude that secret is

throw new Exception(".."); negative if we observe the exception

int say[] = getSecretArray();
.?J say[secrety] = 0;

Tian Tan @ Nanjing University 57

Does Secret Information Leak?

while (secrety < 0) { .. };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secrety < 0)
for (int 1 = 0; i < 1000000; ++i) { .. };

Leak, we can conclude that secret is negative
if the program execution spends more time

if (secrety < 0) Leak, we can conclude that secret is

throw new Exception(".."); negative if we observe the exception

int say[] = getSecretArray();
say[secrety] = 0; Leak, exception may reveal that secret is negative

Tian Tan @ Nanjing University 58

Covert/Hidden Channels

= Mechanisms for signalling information through a computing
system are known as channels.

= Channels that exploit a mechanism whose primary purpose
is not information transfer are called covert channels*.

*Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.
59

Covert/Hidden Channels

= Mechanisms for signalling information through a computing
system are known as channels.

= Channels that exploit a mechanism whose primary purpose
is not information transfer are called covert channels*.

Implicit flows if (secrety < @) p; = 1; else p = 0;
signal information through the control structure of a program

* Termination channels while (secrety < @) { .. };
signal information through the (non)termination of a computation

Timing channels if (secrety < @) for (.) { .. };
signal information through the computation time

Exceptions if (secrety < @) throw new Exception("..");
signal information through the exceptions

*Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.

Tian Tan @ Nanjing University

60

Explicit Flows and Covert Channels

 Explicit flows generally carry more information than
covert channels, so we focus on explicit flows

int secretH

getSecret();
int publik, = secrety;

Explicit flow:
transmits 32 bits of information

int secrety = getSecret();
if (secrety % 2 == 0)

publik, = 1;
else

publik, = ©;
Implicit flow:

transmits 1 bit of information

61

Explicit Flows and Covert Channels

 Explicit flows generally carry more information than
covert channels, so we focus on explicit flows

int secrety = getSecret();
if (secrety % 2 == 0)

int secrety = getSecret(); , .
int publik, = secrety; publik = 1;
else
publik, = ©;
Explicit flow: Implicit flow:
transmits 32 bits of information transmits 1 bit of information

How to prevent unwanted information flows, i.e.,
enforce information flow policies?

62

Contents

Ty =

Information Flow Security
Confidentiality and Integrity
Explicit Flows and Covert Channels

Taint Analysis

63

Taint Analysis

* Taint analysis is the most common information flow
analysis. It classifies program data into two kinds:

e Data of interest, some kinds of labels are associated with
the data, called tainted data

e Other data, called untainted data

64

Taint Analysis

* Taint analysis is the most common information flow
analysis. It classifies program data into two kinds:

e Data of interest, some kinds of labels are associated with
the data, called tainted data

e Other data, called untainted data

* Sources of tainted data is called sources. In practice,
tainted data usually come from the return values of
some methods (regarded as sources).

65

Taint Analysis

* Taint analysis is the most common information flow
analysis. It classifies program data into two kinds:

e Data of interest, some kinds of labels are associated with
the data, called tainted data

e Other data, called untainted data

* Sources of tainted data is called sources. In practice,
tainted data usually come from the return values of
some methods (regarded as sources).

* Taint analysis tracks how tainted data flow through
the program and observes if they can flow to locations
of interest (called sinks). In practice, sinks are usually

some sensitive methods. @ tainted data @

66

Taint Analysis: Two Applications

* Confidentiality
e Source: source of secret data

* Sink: leakage x = getPassword(); // source

* Information leaks y = X;
log(y); // sink

* Integrity
e Source: source of untrusted data
¢ Slnk: Cr|t|ca| COmpUtathn X = r\eadInput(); // source

* Injection errors cnd = ".L0T 4+ X
execute(cmd); // sink

Taint analysis can detect both unwanted information flows

67

Taint Analysis

e “Can tainted data flow to a sink?”

68

Taint Analysis

e “Can tainted data flow to a sink?”

Or, in another way

* “Which tainted data a pointer (at a sink) can point to?”

69

Taint and Pointer Analysis, Together*

The essence of taint analysis/pointer analysis is to track
how tainted data/abstract objects flow through the program

* Treats tainted data as (artificial) objects
* Treats sources as allocation sites (of tainted data)
* Leverages pointer analysis to propagate tainted data

*Neville Grech and Yannis Smaragdakis, “P/Taint: Unified Points-to and Taint Analysis”.
OOPSLA 2017.

Tian Tan @ Nanjing University 70

Domains and Notations

Variables: X,y €V

Fields: f,g €eF

Objects: 0i,0j €0

Tainted data: ti,ti eTcO
Instance fields: 0if,0j.g O xF
Pointers: Pointer= V U (O x F)
Points-to relations: pt: Pointer — P(0)

* tidenotes the tainted data from call site I
* P(0) denotes the powerset of O
* pt(p) denotes the points-to set of p

71

Domains and Notations

Variables: X,y €V

Fields g eF [fmed fen
Objects: 0i,0j €O

[Tainted data: ti,tf €T C O] All objects (O)
Instance fields: oif,0.,g €O xF

Pointers: Pointer= V U (O x F)

Points-to relations: pt: Pointer — P(0)

» [tidenotes the tainted data from call site i |
* P(0) denotes the powerset of O
* pt(p) denotes the points-to set of p 72

Taint Analysis: Inputs & Outputs

* Inputs

e Sources: a set of source methods (the calls to these
methods return tainted data)

e Sinks: a set of sink methods (that tainted data flow to these
methods violates security polices)

* Outputs

* TaintFlows: a set of pairs of tainted data and sink methods

E.g., (t;, m) € TaintFlows denotes that the tainted data from call
site i (which calls a source method) may flow to sink method m

73

Rules: Call

 Handles sources (generates tainted data)

Kind Statement Rule
[l->meCG
Call |L: r = x.k(al,..,an) m € Sources

t; € pt(r)

Rules (Same as Pointer Analysis)

Kind Statement Rule
New 1: X = new T() 0; € pt(x)
Assign X =Yy % € Pty
0; € pt(x)
Store x.f =y 0; € pt(x), o; € pt(y)
0j € pt(0;.f)
Load y = x.f 0; € pt(x), o € pt(o;. f)
0; € pt(y)
0; € pt(x), m = Dispatch(o;, k)
o, Ept(aj),1<j<n
O‘U € pt(mret)
Call L: r = x.k(al,..,an
| X-k() 0; € pt(Mepis)
o, Ept(my;),1<j<n

Propagate objects and tainted data

oy € pt(r)

75

Rules: Call

Handles sources (generates tainted data)

Kind

Call

L:

r

Statement

x.k(al,..,an)

Rule

[l->meCG
m € Sources

t; € pt(r)

Handles sinks (generates taint flow information)

Kind

Call

L:

r\

Statement

x.k(al,..,an)

Rule

[l ->meCG
m € Sinks
3i,1 < i <n:t; € pt(ai)

(tj, m) € TaintFlows

76

Taint Analysis: An

coNO VT WDNBR

R R B O
N RO

13
14
15

void main() {

}

A X = new A();

String pw = getPassword();
Ay = X;

X.f = pw;

String s = y.f;

log(s);

String getPassword() {

}

return new String(..);

class A {

}

String f;

Example

Sources:

Sinks:

Tian Tan @ Nanjing University

{ getPassword() }

{ log(String) }

77

Taint Analysis: An

1
2
3
4
5
6
7
8
9

void main() {

}

m) A x = new A();

String pw = getPassword();
Ay = X;

X.f = pw;

String s = y.f;

log(s);

String getPassword() {

}

return new String(..);

class A {

}

String f;

Example

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable

Object

X 0-

Tian Tan @ Nanjing University

78

Taint Analysis: An Example

1 void main() { Sources: { getPassword() }
2 A X = new A();
3mm) String pw = getPassword(); Sinks: { log(String) }

4 Ay = X;

5 X.f = pw;

6 String s = y.f;
7

8

9

} log(s); Variable Object

String getPassword() { X 02
10 . pw 011
11 return new String(..);
12 }
13 class A {
14 String f;
15 }

Tian Tan @ Nanjing University 79

Taint Analysis: An Example

1 void main() { Sources: { getPassword() }
2 A x = new A();
3mmp String pw = getPassword(); Sinks: { log(String) }
4 Ay = X;
5 X.f = pw;
6 String s = y.f;
[y)
9 String getPassword() { X 02
10 pw 011, t3
11 return new String(..);
12 }
Kind Statement Rule
[-meCaG
Call | L: r = x.k(al,..,an) | m € Sources
t; € pt(r)

Tian Tan @ Nanjing University 80

Taint Analysis: An Example

1 void main() { Sources: { getPassword() }
2 A x = new A();

3 String pw = getPassword(); Sinks: { log(String) }
Ammp Ay = X;

5 X.f = pw;

6 String s = y.f;

)
9 String getPassword() { X 02

106 .. pw 011, t3
11 return new String(..); o

12 } Y 2

13 class A {

14 String f;

15 }

Tian Tan @ Nanjing University 81

Taint Analysis: An

1 void main() {

2 A x = new A();

3 String pw = getPassword();
4 Ay = x;

S x.f = pw;

6 String s = y.f;

7 log(s);

8 }

9 String getPassword() {
10

11 return new String(..);
12 }

13 class A {

14 String f;

15 }

Example

Sources: { getPassword() }

Sinks: { log(String) }

Variable Object
X 07

pw

011, l3

02.'F

y 03
Field Object

011, l3

Tian Tan @ Nanjing University

82

Taint Analysis: An

1 void main() {

2 A x = new A();

3 String pw = getPassword();
4 Ay = X;

5 X.f = pw;

cmmp String s = y.f;

7 log(s);

8 }

9 String getPassword() {
10 .

11 return new String(..);
12 }

13 class A {

14 String f;

15 }

Tian Tan @ Nanjing University

Sources:

Sinks:

Example

Variable Object
X 05

{ getPassword() }

{ log(String) }

02.'F

pw 011, l3
y o)
S 011,13

Field Object

011, l3

83

Taint Analysis: An Example

void main() {
A X = new A();
String pw = getPassword();

Sources: { getPassword() }

Sinks: { log(String) }

x.f = pw; TaintFlows: { (t3, l0g(String)) }

1
2
3
4 Ay = x;
5
6

String s = y.f;

7mm) log(s);

8 }

9 String getPassword() {

10

11 return new String(..);

12 }

Kind Statement Rule
[l->meCG
m € Sinks

Call | L: r = x.k(al,..,an) |3;1 < < n: t; € pt(ai)

Variable Object
X 07

pw 011,13
y 02
S 011,13
0,.f 011, t3

(tj, m) € TaintFlows 84

Taint Analysis: An

1 void main() {

2 A x = new A();

3 String pw = getPassword();
4 Ay = X;
5
6

X.f = pw;
String s = y.f;
7mm) log(s);
8 }

9 String getPassword() {
10

11 return new String(..);
12 }

13 class A {

14 String f;

15 }

Example

Sources: { getPassword() }
Sinks: { log(String) }
TaintFlows: { (ts, log(String)) }

Variable Object
X 07

pw 011,13
Y 02
S 011, L3
0,.f 011, t3

Tian Tan @ Nanjing University 85

The X You Need To Understand in This Lecture

« Concept of information flow security
« Confidentiality and integrity
« Explicit flows and covert channels

« Use taint analysis to detect unwanted information flow

FoER!
XNES27 !

(%

Tian Tan @ Nanjing University 86

&

%
S

N
R

< ‘4 é\-
3N o g I gk b 2

T o S B

