
Yue Li and Tian Tan

Static Program Analysis

2020 Spring

Nanjing University

Tian Tan

2020

Static Analysis for

Static Program Analysis

Security

Security

Tian Tan @ Nanjing University 3

Achieving some goals in the presence of adversaries

Security

Physical World

• Goals
• Personal safety

• Property safety

• …

• Adversaries
• Thieves

• Criminals

• …

Tian Tan @ Nanjing University 4

Achieving some goals in the presence of adversaries

Security

Physical World

• Goals
• Personal safety

• Property safety

• …

• Adversaries
• Thieves

• Criminals

• …

Cyber World

• Goals
• Dependability

• Data safety

• …

• Adversaries
• Crackers

• Cyber attackers

• …

Tian Tan @ Nanjing University 5

Achieving some goals in the presence of adversaries

Computer Security

Tian Tan @ Nanjing University 6

Becomes increasingly important nowadays

Computer Security

Tian Tan @ Nanjing University 7

Becomes increasingly important nowadays

Computer Security

Tian Tan @ Nanjing University 8

Becomes increasingly important nowadays

*National Vulnerability Database, https://nvd.nist.gov/

Causes of exploited vulnerabilities in 2013-2019*
• Injection errors (No. 1), 11821, 4.6/day
• Information leaks (No. 4), 5086, 2.0/day

https://nvd.nist.gov/

Computer Security

Tian Tan @ Nanjing University 9

Becomes increasingly important nowadays

*National Vulnerability Database, https://nvd.nist.gov/

Causes of exploited vulnerabilities in 2013-2019*
• Injection errors (No. 1), 11821, 4.6/day
• Information leaks (No. 4), 5086, 2.0/day

https://nvd.nist.gov/

Contents

1. Information Flow Security

2. Confidentiality and Integrity

3. Explicit Flows and Covert Channels

4. Taint Analysis

10Tian Tan @ Nanjing University

1. Information Flow Security

2. Confidentiality and Integrity

3. Explicit Flows and Covert Channels

4. Taint Analysis

11Tian Tan @ Nanjing University

Contents

Information Flow: An Example

Tian Tan @ Nanjing University 12

sensitive

Information Flow: An Example

Tian Tan @ Nanjing University 13

sensitive

Information Flow: An Example

Tian Tan @ Nanjing University 14

sensitive

Information Flow: An Example

Tian Tan @ Nanjing University 15

sensitive

Information Flow: An Example

Tian Tan @ Nanjing University 16

sensitive

Information Flow Security: Motivation

Tian Tan @ Nanjing University 17

Prevent unwanted information flow
Protect information security

X

sensitive

Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access
certain information

• Concerns how information is accessed

Tian Tan @ Nanjing University 18

Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access
certain information

• Concerns how information is accessed

Tian Tan @ Nanjing University 19

What happens after that?

Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access
certain information

• Concerns how information is accessed

• Information flow security (end-to-end)
• Tracks how information flows through the program to make

sure that the program handles the information securely

• Concerns how information is propagated

Tian Tan @ Nanjing University 20

What happens after that?

Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access
certain information

• Concerns how information is accessed

• Information flow security (end-to-end)
• Tracks how information flows through the program to make

sure that the program handles the information securely

• Concerns how information is propagated

Tian Tan @ Nanjing University 21

What happens after that?

"A practical system needs both access and flow control to satisfy all security requirements."
— D. Denning, 1976

Information Flow*

• Information flow: if the information in variable x is
transferred to variable y, then there is information
flow x → y

Tian Tan @ Nanjing University 22

Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

*

Information Flow*

• Information flow: if the information in variable x is
transferred to variable y, then there is information
flow x → y

• Examples

Tian Tan @ Nanjing University 23

𝑥 𝑦

y = x;
a = x;
b.f = a;
y = b.f;

Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

*

Information Flow*

• Information flow: if the information in variable x is
transferred to variable y, then there is information
flow x → y

• Examples

Tian Tan @ Nanjing University 24

𝑥 𝑦

y = x;
a = x;
b.f = a;
y = b.f;

Looks like pointer analysis?
We will see …

Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure
Information Flow”. CACM 1977.

*

Information Flow Security

Connects information flow to security

• Classifies program variables into different security levels

• Specifies permissible flows between these levels, i.e.,
information flow policy

Tian Tan @ Nanjing University 25

Security Levels (Classes)

• The most basic model is two-level policy, i.e., a
variable is classified into one of two security levels:

1. H, meaning high security, secret information

2. L, meaning low security, public observable information

Tian Tan @ Nanjing University 26

• h = getPassword(); // h is high security
• broadcast(l); // l is low security

Security Levels (Classes)

• The most basic model is two-level policy, i.e., a
variable is classified into one of two security levels:

1. H, meaning high security, secret information

2. L, meaning low security, public observable information

• Security levels can be modeled as lattice*
• L ≤ H

Tian Tan @ Nanjing University 27

Dorothy E. Denning, “A Lattice Model of Secure Information Flow”. CACM 1976.*

H

L

• h = getPassword(); // h is high security
• broadcast(l); // l is low security

More Complicated Security Levels

• China classification • A (possible) business
classification

Tian Tan @ Nanjing University 28

Top secret (绝密)

Confidential (机密)

Classified (秘密)

Unclassified (公开)

Top secret

Department A
top secret

Department A
secret

Unclassified

Department B
secret

Department B
top secret

Secret

Information Flow Policy

• Restricts how information flows between different
security levels

Tian Tan @ Nanjing University 29

Information Flow Policy

• Restricts how information flows between different
security levels

• Noninterference policy*
• Requires the information of high variables have no effect

on (i.e., should not interfere with) the information of
low variables

• Intuitively, you should not be able to conclude anything
about high information by observing low variables

Tian Tan @ Nanjing University 30

J. A. Goguen and J. Meseguer, “Security policies and security models”. S&P 1982.*

Secret (H) Public (L)X

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL

Tian Tan @ Nanjing University 31

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL
• xL = yH

Tian Tan @ Nanjing University 32

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL
• xL = yH
• xH = yL

Tian Tan @ Nanjing University 33

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL
• xL = yH
• xH = yL
• xL = yL + zH

Tian Tan @ Nanjing University 34

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL
• xL = yH
• xH = yL
• xL = yL + zH

Tian Tan @ Nanjing University 35

Noninterference

• Requires the information of high variables have
no effect on (i.e., should not interfere with) the
information of low variables

• xH = yH
• xL = yL
• xL = yH
• xH = yL
• xL = yL + zH

Tian Tan @ Nanjing University 36

H

L

Ensures that information flows
only upwards in the lattice

H H

X

L L

Contents

1. Information Flow Security

2. Confidentiality and Integrity

3. Explicit Flows and Covert Channels

4. Taint Analysis

37Tian Tan @ Nanjing University

• Confidentiality
• Prevent secret information from being leaked

Tian Tan @ Nanjing University 38

X

• Confidentiality
• Prevent secret information from being leaked

Tian Tan @ Nanjing University 39

Information flow security from another perspective

X

X

• Integrity
• Prevent untrusted information from corrupting

(trusted) critical information

Integrity
• Prevent untrusted information from corrupting

(trusted) critical information1

Tian Tan @ Nanjing University 40

1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.

x = readInput(); // untrusted
cmd = "..." + x;
execute(cmd); // critical (trusted)

Integrity
• Prevent untrusted information from corrupting

(trusted) critical information1

• Injection errors (#1 cause of vulnerabilities in 2013-20192)
• Command injection

• SQL injection

• XSS attacks

• …

Tian Tan @ Nanjing University 41

1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.

2. National Vulnerability Database, https://nvd.nist.gov/

x = readInput(); // untrusted
cmd = "..." + x;
execute(cmd); // critical (trusted)

https://nvd.nist.gov/

Confidentiality and Integrity

Confidentiality

• Security classification
• Secret (High secret)

• Public (Low secret)

• Read protection

Integrity

• Security classification
• Trusted (High integrity)

• Untrusted (Low integrity)

• Write protection

Tian Tan @ Nanjing University 42

Duals

X

H

L

L

H

secret public

X
trusted untrusted

Integrity, Broad Definition

• To ensure the correctness, completeness, and
consistency of data

• Correctness
• E.g., for information flow integrity, the (trusted) critical data

should not be corrupted by untrusted data

• Completeness
• E.g., a database system should store all data completely

• Consistency
• E.g., a file transfer system should ensure that the file contents

of both ends (sender and receiver) are identical

Tian Tan @ Nanjing University 43

1. Information Flow Security

2. Confidentiality and Integrity

3. Explicit Flows and Covert Channels

4. Taint Analysis

44Tian Tan @ Nanjing University

Contents

How Does Information Flow

• xH = yH
• xL = yH
• xL = yL + zH

Tian Tan @ Nanjing University 45

We have seen how information flows through direct copying.
This is called explicit flow.

How Does Information Flow

• xH = yH
• xL = yH
• xL = yL + zH

Tian Tan @ Nanjing University 46

Is this the only way of information flow?

We have seen how information flows through direct copying.
This is called explicit flow.

Does Secret Information Leak?

Tian Tan @ Nanjing University 47

secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;

Does Secret Information Leak?

Tian Tan @ Nanjing University 48

secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;
Leak, we can conclude if secret is
negative or not by observing publik

Implicit Flows

Tian Tan @ Nanjing University 49

secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;
Leak, we can conclude if secret is
negative or not by observing publik

• This kind of information flow is called implicit flow,
which may arise when the control flow is affected by
secret information.

• Any differences in side effects under secret control
encode information about the control, which may be
publicly observable and leak secret information.

Implicit Flows

Tian Tan @ Nanjing University 50

secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;
Leak, we can conclude if secret is
negative or not by observing publik

• This kind of information flow is called implicit flow,
which may arise when the control flow is affected by
secret information.

• Any differences in side effects under secret control
encode information about the control, which may be
publicly observable and leak secret information.

Does Secret Information Leak?

Tian Tan @ Nanjing University 51

while (secretH < 0) { … };

Does Secret Information Leak?

Tian Tan @ Nanjing University 52

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

Does Secret Information Leak?

Tian Tan @ Nanjing University 53

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Does Secret Information Leak?

Tian Tan @ Nanjing University 54

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative
if the program execution spends more time

Does Secret Information Leak?

Tian Tan @ Nanjing University 55

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative
if the program execution spends more time

if (secretH < 0)
throw new Exception("…");

Does Secret Information Leak?

Tian Tan @ Nanjing University 56

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative
if the program execution spends more time

if (secretH < 0)
throw new Exception("…");

Leak, we can conclude that secret is
negative if we observe the exception

Does Secret Information Leak?

Tian Tan @ Nanjing University 57

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative
if the program execution spends more time

if (secretH < 0)
throw new Exception("…");

Leak, we can conclude that secret is
negative if we observe the exception

int saH[] = getSecretArray();

saH[secretH] = 0;

Does Secret Information Leak?

Tian Tan @ Nanjing University 58

while (secretH < 0) { … };

Leak, we can conclude that secret is negative
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative
if the program execution spends more time

Leak, we can conclude that secret is
negative if we observe the exception

if (secretH < 0)
throw new Exception("…");

int saH[] = getSecretArray();

saH[secretH] = 0; Leak, exception may reveal that secret is negative

Covert/Hidden Channels

Tian Tan @ Nanjing University 59

Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.*

▪ Mechanisms for signalling information through a computing
system are known as channels.

▪ Channels that exploit a mechanism whose primary purpose
is not information transfer are called covert channels*.

Covert/Hidden Channels

• Implicit flows
signal information through the control structure of a program

• Termination channels
signal information through the (non)termination of a computation

• Timing channels
signal information through the computation time

• Exceptions
signal information through the exceptions

• …

Tian Tan @ Nanjing University 60

if (secretH < 0) pL = 1; else pL = 0;

Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.*

if (secretH < 0) for (…) { … };

while (secretH < 0) { … };

if (secretH < 0) throw new Exception("…");

▪ Mechanisms for signalling information through a computing
system are known as channels.

▪ Channels that exploit a mechanism whose primary purpose
is not information transfer are called covert channels*.

Explicit Flows and Covert Channels

• Explicit flows generally carry more information than
covert channels, so we focus on explicit flows

Tian Tan @ Nanjing University 61

int secretH = getSecret();

if (secretH % 2 == 0)

publikL = 1;

else

publikL = 0;

int secretH = getSecret();

int publikL = secretH;

Explicit flow:
transmits 32 bits of information

Implicit flow:
transmits 1 bit of information

Explicit Flows and Covert Channels

• Explicit flows generally carry more information than
covert channels, so we focus on explicit flows

Tian Tan @ Nanjing University 62

How to prevent unwanted information flows, i.e.,
enforce information flow policies?

int secretH = getSecret();

if (secretH % 2 == 0)

publikL = 1;

else

publikL = 0;

int secretH = getSecret();

int publikL = secretH;

Explicit flow:
transmits 32 bits of information

Implicit flow:
transmits 1 bit of information

63

Contents

1. Information Flow Security

2. Confidentiality and Integrity

3. Explicit Flows and Covert Channels

4. Taint Analysis

Tian Tan @ Nanjing University

Taint Analysis
• Taint analysis is the most common information flow

analysis. It classifies program data into two kinds:
• Data of interest, some kinds of labels are associated with

the data, called tainted data

• Other data, called untainted data

Tian Tan @ Nanjing University 64

Taint Analysis
• Taint analysis is the most common information flow

analysis. It classifies program data into two kinds:
• Data of interest, some kinds of labels are associated with

the data, called tainted data

• Other data, called untainted data

• Sources of tainted data is called sources. In practice,
tainted data usually come from the return values of
some methods (regarded as sources).

Tian Tan @ Nanjing University 65

Taint Analysis
• Taint analysis is the most common information flow

analysis. It classifies program data into two kinds:
• Data of interest, some kinds of labels are associated with

the data, called tainted data

• Other data, called untainted data

• Sources of tainted data is called sources. In practice,
tainted data usually come from the return values of
some methods (regarded as sources).

• Taint analysis tracks how tainted data flow through
the program and observes if they can flow to locations
of interest (called sinks). In practice, sinks are usually
some sensitive methods.

Tian Tan @ Nanjing University 66

Source Sink
tainted data

Taint Analysis: Two Applications

• Confidentiality
• Source: source of secret data

• Sink: leakage

• Information leaks

• Integrity
• Source: source of untrusted data

• Sink: critical computation

• Injection errors

Tian Tan @ Nanjing University 67

Taint analysis can detect both unwanted information flows

x = readInput(); // source
cmd = "..." + x;
execute(cmd); // sink

x = getPassword(); // source
y = x;
log(y); // sink

Taint Analysis

• “Can tainted data flow to a sink?”

Tian Tan @ Nanjing University 68

Taint Analysis

• “Can tainted data flow to a sink?”

• “Which tainted data a pointer (at a sink) can point to?”

Tian Tan @ Nanjing University 69

Or, in another way

Taint and Pointer Analysis, Together*

• Treats tainted data as (artificial) objects

• Treats sources as allocation sites (of tainted data)

• Leverages pointer analysis to propagate tainted data

Tian Tan @ Nanjing University 70

Neville Grech and Yannis Smaragdakis, “P/Taint: Unified Points-to and Taint Analysis”.
OOPSLA 2017.

*

The essence of taint analysis/pointer analysis is to track
how tainted data/abstract objects flow through the program

Domains and Notations

71

Variables: x, y ∈ V

Fields: f, g ∈ F

Objects: oi, oj ∈ O

Tainted data: ti, tj ∈ T ⊂ O

Instance fields: oi.f, oj.g ∈ O × F

Pointers: Pointer = V ⋃ (O × F)

Points-to relations: pt : Pointer → 𝒫(O)

Tian Tan @ Nanjing University

• ti denotes the tainted data from call site i
• 𝒫(O) denotes the powerset of O
• pt(p) denotes the points-to set of p

Domains and Notations

72

Variables: x, y ∈ V

Fields: f, g ∈ F

Objects: oi, oj ∈ O

Tainted data: ti, tj ∈ T ⊂ O

Instance fields: oi.f, oj.g ∈ O × F

Pointers: Pointer = V ⋃ (O × F)

Points-to relations: pt : Pointer → 𝒫(O)

Tian Tan @ Nanjing University

Regular
objects

Tainted
data (T)

All objects (O)

• ti denotes the tainted data from call site i
• 𝒫(O) denotes the powerset of O
• pt(p) denotes the points-to set of p

Taint Analysis: Inputs & Outputs

• Inputs
• 𝑆𝑜𝑢𝑟𝑐𝑒𝑠: a set of source methods (the calls to these

methods return tainted data)

• 𝑆𝑖𝑛𝑘𝑠: a set of sink methods (that tainted data flow to these
methods violates security polices)

• Outputs
• 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠: a set of pairs of tainted data and sink methods

E.g., 𝑡𝑖, 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠 denotes that the tainted data from call
site 𝑖 (which calls a source method) may flow to sink method 𝑚

Tian Tan @ Nanjing University 73

Rules: Call

Tian Tan @ Nanjing University 74

• Handles sources (generates tainted data)

Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)

Rules (Same as Pointer Analysis)
Kind Statement Rule

New i: x = new T() 𝑜𝑖 ∈ 𝑝𝑡(𝑥)

Assign x = y
𝑜𝑖 ∈ 𝑝𝑡(𝑦)

𝑜𝑖 ∈ 𝑝𝑡(𝑥)

Store x.f = y 𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑜𝑗 ∈ 𝑝𝑡 𝑦

𝑜𝑗 ∈ 𝑝𝑡(𝑜𝑖 . 𝑓)

Load y = x.f 𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑜𝑗 ∈ 𝑝𝑡 𝑜𝑖 . 𝑓

𝑜𝑗 ∈ 𝑝𝑡(𝑦)

Call l: r = x.k(a1,…,an)

𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑚 = Dispatch(𝑜𝑖 , k)

𝑜𝑢 ∈ 𝑝𝑡 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑛
𝑜𝑣 ∈ 𝑝𝑡(𝑚𝑟𝑒𝑡)
𝑜𝑖 ∈ 𝑝𝑡(𝑚𝑡ℎ𝑖𝑠)

𝑜𝑢 ∈ 𝑝𝑡 𝑚𝑝𝑗 , 1 ≤ 𝑗 ≤ 𝑛

𝑜𝑣 ∈ 𝑝𝑡(𝑟)

75Tian Tan @ Nanjing University

Propagate objects and tainted data

Rules: Call

Tian Tan @ Nanjing University 76

Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)

• Handles sources (generates tainted data)

• Handles sinks (generates taint flow information)

Kind Statement Rule

Call l: r = x.k(a1,…,an)

𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑖𝑛𝑘𝑠

∃𝑖, 1 ≤ 𝑖 ≤ 𝑛: 𝑡𝑗 ∈ 𝑝𝑡(𝑎𝑖)

𝑡𝑗 , 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠

Taint Analysis: An Example

Tian Tan @ Nanjing University 77

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Taint Analysis: An Example

Tian Tan @ Nanjing University 78

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11

Taint Analysis: An Example

Tian Tan @ Nanjing University 79

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

Taint Analysis: An Example

Tian Tan @ Nanjing University 80

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

Taint Analysis: An Example

Tian Tan @ Nanjing University 81

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Taint Analysis: An Example

Tian Tan @ Nanjing University 82

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

Field Object

𝑜2.f 𝑜11, 𝑡3

Taint Analysis: An Example

Tian Tan @ Nanjing University 83

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3

Taint Analysis: An Example

Tian Tan @ Nanjing University 84

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3

Kind Statement Rule

Call l: r = x.k(a1,…,an)

𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑖𝑛𝑘𝑠

∃𝑖, 1 ≤ 𝑖 ≤ 𝑛: 𝑡𝑗 ∈ 𝑝𝑡(𝑎𝑖)

𝑡𝑗 , 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠

TaintFlows: { ⟨𝑡3, log(String)⟩ }

Taint Analysis: An Example

Tian Tan @ Nanjing University 85

1 void main() {
2 A x = new A();
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10 …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3

TaintFlows: { ⟨𝑡3, log(String)⟩ }

TheX You Need To Understand in This Lecture

Tian Tan @ Nanjing University 86

• Concept of information flow security

• Confidentiality and integrity

• Explicit flows and covert channels

• Use taint analysis to detect unwanted information flow

南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析

