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Achieving some goals in the presence of adversaries
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Physical World

• Goals
• Personal safety

• Property safety

• …

• Adversaries
• Thieves

• Criminals

• …

Tian Tan @ Nanjing University 4

Achieving some goals in the presence of adversaries



Security

Physical World

• Goals
• Personal safety

• Property safety

• …

• Adversaries
• Thieves

• Criminals

• …

Cyber World

• Goals
• Dependability

• Data safety

• …

• Adversaries
• Crackers

• Cyber attackers

• …
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Achieving some goals in the presence of adversaries
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*National Vulnerability Database, https://nvd.nist.gov/

Causes of exploited vulnerabilities in 2013-2019*
• Injection errors (No. 1), 11821, 4.6/day
• Information leaks (No. 4), 5086, 2.0/day

https://nvd.nist.gov/
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Information Flow Security: Motivation
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Prevent unwanted information flow
Protect information security

X

sensitive



Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access 
certain information

• Concerns how information is accessed

Tian Tan @ Nanjing University 18



Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access 
certain information

• Concerns how information is accessed

Tian Tan @ Nanjing University 19

What happens after that?



Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access 
certain information

• Concerns how information is accessed

• Information flow security (end-to-end)
• Tracks how information flows through the program to make 

sure that the program handles the information securely

• Concerns how information is propagated

Tian Tan @ Nanjing University 20

What happens after that?



Access Control vs.
Information Flow Security
• Access control (a standard way to protect sensitive data)

• Checks if the program has the rights/permissions to access 
certain information

• Concerns how information is accessed

• Information flow security (end-to-end)
• Tracks how information flows through the program to make 

sure that the program handles the information securely

• Concerns how information is propagated

Tian Tan @ Nanjing University 21

What happens after that?

"A practical system needs both access and flow control to satisfy all security requirements."
— D. Denning, 1976



Information Flow*

• Information flow: if the information in variable x is 
transferred to variable y, then there is information 
flow x → y
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Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure 
Information Flow”. CACM 1977.
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𝑥 𝑦

y = x;
a = x;
b.f = a;
y = b.f;

Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure 
Information Flow”. CACM 1977.
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Information Flow*

• Information flow: if the information in variable x is 
transferred to variable y, then there is information 
flow x → y

• Examples
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𝑥 𝑦

y = x;
a = x;
b.f = a;
y = b.f;

Looks like pointer analysis?
We will see …

Dorothy E. Denning and Peter J. Denning, “Certification of Programs for Secure 
Information Flow”. CACM 1977.

*



Information Flow Security

Connects information flow to security

• Classifies program variables into different security levels

• Specifies permissible flows between these levels, i.e., 
information flow policy
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Security Levels (Classes)

• The most basic model is two-level policy, i.e., a 
variable is classified into one of two security levels:

1. H, meaning high security, secret information

2. L, meaning low security, public observable information
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• h = getPassword(); // h is high security
• broadcast(l); // l is low security



Security Levels (Classes)

• The most basic model is two-level policy, i.e., a 
variable is classified into one of two security levels:

1. H, meaning high security, secret information

2. L, meaning low security, public observable information

• Security levels can be modeled as lattice*
• L ≤ H
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Dorothy E. Denning, “A Lattice Model of Secure Information Flow”. CACM 1976.*

H

L

• h = getPassword(); // h is high security
• broadcast(l); // l is low security



More Complicated Security Levels

• China classification • A (possible) business 
classification
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Top secret (绝密)

Confidential (机密)

Classified (秘密)

Unclassified (公开)

Top secret

Department A
top secret

Department A
secret

Unclassified

Department B
secret

Department B
top secret

Secret



Information Flow Policy

• Restricts how information flows between different 
security levels
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Information Flow Policy

• Restricts how information flows between different 
security levels

• Noninterference policy*
• Requires the information of high variables have no effect

on (i.e., should not interfere with) the information of 
low variables

• Intuitively, you should not be able to conclude anything 
about high information by observing low variables

Tian Tan @ Nanjing University 30

J. A. Goguen and J. Meseguer, “Security policies and security models”. S&P 1982.*

Secret (H) Public (L)X



Noninterference

• Requires the information of high variables have 
no effect on (i.e., should not interfere with) the 
information of low variables

• xH = yH
• xL = yL
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H

L

Ensures that information flows 
only upwards in the lattice

H H

X

L L
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• Confidentiality
• Prevent secret information from being leaked
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Information flow security from another perspective

X

X

• Integrity
• Prevent untrusted information from corrupting 

(trusted) critical information



Integrity
• Prevent untrusted information from corrupting 

(trusted) critical information1
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1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical 
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.

x = readInput(); // untrusted
cmd = "..." + x;
execute(cmd); // critical (trusted)



Integrity
• Prevent untrusted information from corrupting 

(trusted) critical information1

• Injection errors (#1 cause of vulnerabilities in 2013-20192)
• Command injection

• SQL injection

• XSS attacks

• …
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1. Ken Biba, “Integrity Considerations for Secure Computer Systems”. Technical 
Report, ESD-TR-76-372, USAF Electronic Systems Division, Bed-ford, MA, 1977.

2. National Vulnerability Database, https://nvd.nist.gov/

x = readInput(); // untrusted
cmd = "..." + x;
execute(cmd); // critical (trusted)

https://nvd.nist.gov/


Confidentiality and Integrity

Confidentiality

• Security classification
• Secret (High secret)

• Public (Low secret)

• Read protection

Integrity

• Security classification
• Trusted (High integrity)

• Untrusted (Low integrity)

• Write protection
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Duals

X

H

L

L

H

secret public

X
trusted untrusted



Integrity, Broad Definition

• To ensure the correctness, completeness, and 
consistency of data

• Correctness
• E.g., for information flow integrity, the (trusted) critical data 

should not be corrupted by untrusted data

• Completeness
• E.g., a database system should store all data completely

• Consistency
• E.g., a file transfer system should ensure that the file contents 

of both ends (sender and receiver) are identical
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How Does Information Flow

• xH = yH
• xL = yH
• xL = yL + zH
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We have seen how information flows through direct copying.
This is called explicit flow.



How Does Information Flow

• xH = yH
• xL = yH
• xL = yL + zH

Tian Tan @ Nanjing University 46

Is this the only way of information flow?

We have seen how information flows through direct copying.
This is called explicit flow.



Does Secret Information Leak?
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secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;
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Implicit Flows

Tian Tan @ Nanjing University 49

secretH = getSecret();

if (secretH < 0)

publikL = 1;

else

publikL = 0;
Leak, we can conclude if secret is 
negative or not by observing publik

• This kind of information flow is called implicit flow, 
which may arise when the control flow is affected by 
secret information.

• Any differences in side effects under secret control
encode information about the control, which may be 
publicly observable and leak secret information.
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while (secretH < 0) { … };
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while (secretH < 0) { … };

Leak, we can conclude that secret is negative 
if the program does not terminate
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Leak, we can conclude that secret is negative 
if the program execution spends more time

if (secretH < 0)
throw new Exception("…");
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negative if we observe the exception

int saH[] = getSecretArray();

saH[secretH] = 0;



Does Secret Information Leak?
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while (secretH < 0) { … };

Leak, we can conclude that secret is negative 
if the program does not terminate

if (secretH < 0)
for (int i = 0; i < 1000000; ++i) { … };

Leak, we can conclude that secret is negative 
if the program execution spends more time

Leak, we can conclude that secret is 
negative if we observe the exception

if (secretH < 0)
throw new Exception("…");

int saH[] = getSecretArray();

saH[secretH] = 0; Leak, exception may reveal that secret is negative



Covert/Hidden Channels
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Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.*

▪ Mechanisms for signalling information through a computing 
system are known as channels.

▪ Channels that exploit a mechanism whose primary purpose 
is not information transfer are called covert channels*.



Covert/Hidden Channels

• Implicit flows
signal information through the control structure of a program

• Termination channels
signal information through the (non)termination of a computation

• Timing channels
signal information through the computation time

• Exceptions
signal information through the exceptions

• …

Tian Tan @ Nanjing University 60

if (secretH < 0) pL = 1; else pL = 0;

Butler W. Lampson, “A Note on the Confinement Problem”. CACM 1973.*

if (secretH < 0) for (…) { … };

while (secretH < 0) { … };

if (secretH < 0) throw new Exception("…");

▪ Mechanisms for signalling information through a computing 
system are known as channels.

▪ Channels that exploit a mechanism whose primary purpose 
is not information transfer are called covert channels*.



Explicit Flows and Covert Channels

• Explicit flows generally carry more information than 
covert channels, so we focus on explicit flows

Tian Tan @ Nanjing University 61

int secretH = getSecret();

if (secretH % 2 == 0)

publikL = 1;

else

publikL = 0;

int secretH = getSecret();

int publikL = secretH;

Explicit flow:
transmits 32 bits of information

Implicit flow:
transmits 1 bit of information



Explicit Flows and Covert Channels

• Explicit flows generally carry more information than 
covert channels, so we focus on explicit flows

Tian Tan @ Nanjing University 62

How to prevent unwanted information flows, i.e., 
enforce information flow policies?

int secretH = getSecret();

if (secretH % 2 == 0)

publikL = 1;

else

publikL = 0;

int secretH = getSecret();

int publikL = secretH;

Explicit flow:
transmits 32 bits of information

Implicit flow:
transmits 1 bit of information
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Taint Analysis
• Taint analysis is the most common information flow 

analysis. It classifies program data into two kinds:
• Data of interest, some kinds of labels are associated with 

the data, called tainted data

• Other data, called untainted data
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Taint Analysis
• Taint analysis is the most common information flow 

analysis. It classifies program data into two kinds:
• Data of interest, some kinds of labels are associated with 

the data, called tainted data

• Other data, called untainted data

• Sources of tainted data is called sources. In practice, 
tainted data usually come from the return values of 
some methods (regarded as sources).

• Taint analysis tracks how tainted data flow through 
the program and observes if they can flow to locations 
of interest (called sinks). In practice, sinks are usually 
some sensitive methods.
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Source Sink
tainted data



Taint Analysis: Two Applications

• Confidentiality
• Source: source of secret data

• Sink: leakage

• Information leaks

• Integrity
• Source: source of untrusted data

• Sink: critical computation

• Injection errors
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Taint analysis can detect both unwanted information flows

x = readInput(); // source
cmd = "..." + x;
execute(cmd); // sink

x = getPassword(); // source
y = x;
log(y); // sink



Taint Analysis

• “Can tainted data flow to a sink?”
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Taint Analysis

• “Can tainted data flow to a sink?”

• “Which tainted data a pointer (at a sink) can point to?”

Tian Tan @ Nanjing University 69

Or, in another way



Taint and Pointer Analysis, Together*

• Treats tainted data as (artificial) objects

• Treats sources as allocation sites (of tainted data)

• Leverages pointer analysis to propagate tainted data

Tian Tan @ Nanjing University 70

Neville Grech and Yannis Smaragdakis, “P/Taint: Unified Points-to and Taint Analysis”. 
OOPSLA 2017.

*

The essence of taint analysis/pointer analysis is to track
how tainted data/abstract objects flow through the program



Domains and Notations

71

Variables: x, y ∈ V

Fields: f, g ∈ F

Objects: oi, oj ∈ O

Tainted data: ti, tj ∈ T ⊂ O

Instance fields: oi.f, oj.g ∈ O × F

Pointers: Pointer = V ⋃ (O × F)

Points-to relations: pt : Pointer → 𝒫(O)

Tian Tan @ Nanjing University

• ti denotes the tainted data from call site i
• 𝒫(O) denotes the powerset of O
• pt(p) denotes the points-to set of p
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Variables: x, y ∈ V

Fields: f, g ∈ F

Objects: oi, oj ∈ O

Tainted data: ti, tj ∈ T ⊂ O

Instance fields: oi.f, oj.g ∈ O × F

Pointers: Pointer = V ⋃ (O × F)
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Regular 
objects

Tainted 
data (T)

All objects (O)

• ti denotes the tainted data from call site i
• 𝒫(O) denotes the powerset of O
• pt(p) denotes the points-to set of p



Taint Analysis: Inputs & Outputs

• Inputs
• 𝑆𝑜𝑢𝑟𝑐𝑒𝑠: a set of source methods (the calls to these 

methods return tainted data)

• 𝑆𝑖𝑛𝑘𝑠: a set of sink methods (that tainted data flow to these 
methods violates security polices)

• Outputs
• 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠: a set of pairs of tainted data and sink methods

E.g., 𝑡𝑖, 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠 denotes that the tainted data from call 
site 𝑖 (which calls a source method) may flow to sink method 𝑚
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Rules: Call
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• Handles sources (generates tainted data)

Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)



Rules (Same as Pointer Analysis)
Kind Statement Rule

New i: x = new T() 𝑜𝑖 ∈ 𝑝𝑡(𝑥)

Assign x = y
𝑜𝑖 ∈ 𝑝𝑡(𝑦)

𝑜𝑖 ∈ 𝑝𝑡(𝑥)

Store x.f = y 𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑜𝑗 ∈ 𝑝𝑡 𝑦

𝑜𝑗 ∈ 𝑝𝑡(𝑜𝑖 . 𝑓)

Load y = x.f 𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑜𝑗 ∈ 𝑝𝑡 𝑜𝑖 . 𝑓

𝑜𝑗 ∈ 𝑝𝑡(𝑦)

Call l: r = x.k(a1,…,an)

𝑜𝑖 ∈ 𝑝𝑡 𝑥 , 𝑚 = Dispatch(𝑜𝑖 , k)

𝑜𝑢 ∈ 𝑝𝑡 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑛
𝑜𝑣 ∈ 𝑝𝑡(𝑚𝑟𝑒𝑡)
𝑜𝑖 ∈ 𝑝𝑡(𝑚𝑡ℎ𝑖𝑠)

𝑜𝑢 ∈ 𝑝𝑡 𝑚𝑝𝑗 , 1 ≤ 𝑗 ≤ 𝑛

𝑜𝑣 ∈ 𝑝𝑡(𝑟)

75Tian Tan @ Nanjing University

Propagate objects and tainted data



Rules: Call
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Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)

• Handles sources (generates tainted data)

• Handles sinks (generates taint flow information)

Kind Statement Rule

Call l: r = x.k(a1,…,an)

𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑖𝑛𝑘𝑠

∃𝑖, 1 ≤ 𝑖 ≤ 𝑛: 𝑡𝑗 ∈ 𝑝𝑡(𝑎𝑖)

𝑡𝑗 , 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠



Taint Analysis: An Example
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }



Taint Analysis: An Example
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2



Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11

Taint Analysis: An Example
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }



Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Kind Statement Rule

Call l: r = x.k(a1,…,an)
𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑡𝑙 ∈ 𝑝𝑡(𝑟)



Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

Field Object

𝑜2.f 𝑜11, 𝑡3
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3

Kind Statement Rule

Call l: r = x.k(a1,…,an)

𝑙 → 𝑚 ∈ 𝐶𝐺
𝑚 ∈ 𝑆𝑖𝑛𝑘𝑠

∃𝑖, 1 ≤ 𝑖 ≤ 𝑛: 𝑡𝑗 ∈ 𝑝𝑡(𝑎𝑖)

𝑡𝑗 , 𝑚 ∈ 𝑇𝑎𝑖𝑛𝑡𝐹𝑙𝑜𝑤𝑠

TaintFlows: { ⟨𝑡3, log(String)⟩ }
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1 void main() {
2 A x = new A(); 
3 String pw = getPassword();
4 A y = x;
5 x.f = pw;
6 String s = y.f;
7 log(s);
8 }
9 String getPassword() {
10   …
11 return new String(…);
12 }
13 class A {
14 String f;
15 }

Sources:

Sinks:

{ getPassword() }

{ log(String) }

Variable Object

𝑥 𝑜2

𝑝𝑤 𝑜11, 𝑡3

𝑦 𝑜2

𝑠 𝑜11, 𝑡3

Field Object

𝑜2.f 𝑜11, 𝑡3

TaintFlows: { ⟨𝑡3, log(String)⟩ }
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• Concept of information flow security

• Confidentiality and integrity

• Explicit flows and covert channels

• Use taint analysis to detect unwanted information flow
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