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Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

But given a path, determine whether it is feasible is, in
general, undecidable.

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}
return r;

Are all the paths executable?

Enter foo

r = age r = -1

Exit foo

return r
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Control Flow Graph of a method in JDK

Infeasible Paths:
Paths in CFG that do not correspond to actual executions

We hope that program analysis results could not be polluted,
or polluted as little as possible, by infeasible paths.

But given a path, determine whether it is feasible is, in
general, undecidable.

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}
return r;

Are all the paths executable?

Enter foo

r = age r = -1

Exit foo

return r

No Hope?
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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo
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foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r
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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

Inevitable

y=18,30,-1
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r = age;

else
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}
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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

x=18,30,-1

y=18,30,-1
Avoidable
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Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”
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Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”

• Realizable paths may not be executable, but unrealizable paths
must not be executable.

• Our goal is to recognize realizable paths so that we could avoid
polluting analysis results along unrealizable paths.
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Realizable Paths

Realizable Paths:
The paths in which “returns” are matched with corresponding “calls”

• Realizable paths may not be executable, but unrealizable paths
must not be executable.

• Our goal is to recognize realizable paths so that we could avoid
polluting analysis results along unrealizable paths.

How?
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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

1:

2:
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main() {
x = foo(18);

y = foo(30);

…

}

foo(int age) {

if(age >= 0)
r = age;

else
r = -1;

}

Enter foo

return r;

r = age r = -1

Exit foo

return r

Enter main

Exit foo

Call foo(18)

Call foo(30)

x = Return foo

y = Return foo

1:

2:

(1

)1

(2

)2

How to recognize realizable paths systematically?
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CFL-Reachability

CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.
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CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

• A valid sentence in language L must follow L’s grammar. 
• A context-free language is a language generated by 

a context-free grammar (CFG).
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CFL-Reachability

CFL-Reachability
A path is considered to connect two nodes A and B, or B is reachable
from A, only if the concatenation of the labels on the edges of the path
is a word in a specified context-free language.

• A valid sentence in language L must follow L’s grammar. 
• A context-free language is a language generated by 

a context-free grammar (CFG).

CFG is a formal grammar in which every production is of the form:
S à 𝛼

where S is a single nonterminal and 𝛼 could be a string of terminals
and/or nonterminals, or empty.

• S à aSb
• S à 𝜀

Context-free means S could be replaced by aSb/𝜀
anywhere, regardless of where S occurs.
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CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

Partially Balanced-Parenthesis Problem via CFL
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CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”

A path is a realizable path iff the path’ word is in the language L(realizable)

Partially Balanced-Parenthesis Problem via CFL

realizableà matched realizable
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CFL-Reachability

• Every right parenthesis “)i” is balanced by a preceding
left parenthesis “(i”, but the converse needs not hold

• For each call site i, label its call edge “(i” and return edge “)i”

• Label all other edges with symbol “e”
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L(realizable):
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L(realizable):

e(1eee)1e ∈ L(realizable)
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L(realizable):

e(1eee)1e ∈ L(realizable) e(1eee)1e(2eee)1
∉ L(realizable)

Yue Li @ Nanjing University



x = 0

CallP

RetP

Print(a,g)

Smain

if a > 0

a = a - g

SP

g = 0

CallP

RetP

eP

emain

0 x g

0 x g

0 x g

0 x g

0 x g

0 a g

0 a g

0 a g

0 a g

0 a g

0 a g

0 a g

0 a g

IFDS

A Program Analysis Framework via Graph Reachability
Yue Li @ Nanjing University



IFDS

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95
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IFDS

IFDS is for interprocedural data flow analysis
with distributive flow functions over finite domains.

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95
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IFDS

IFDS is for interprocedural data flow analysis
with distributive flow functions over finite domains.

IFDS (Interprocedural, Finite, Distributive, Subset Problem)

“Precise Interprocedural Dataflow Analysis via Graph Reachability”
Thomas Reps, Susan Horwitz, and Mooly Sagiv, POPL’95

Provide meet-over-all-realizable-paths (MRP) solution.
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Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

pfp = fn。…。f2 f1。Recall
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Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

Recall
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Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

Recall

MRPn = ⊔
p ∈ RPaths(start, n)

pfp (⊥)

For each node n, MRPn provides a “meet-over-all-realizable-paths” solution
where RPaths(start, n) denotes the set of realizable paths (the path’s word is
in the language L(realizable)) from the start node to n.
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Meet-Over-All-Realizable-Paths (MRP)

Path function for path p, denoted as pfp, is a composition of flow functions
for all edges (sometimes nodes) on p.

MOPn = ⊔
pfp = fn。…。f2 f1。

p ∈ Paths(start, n)
pfp (⊥)

For each node n, MOPn provides a “meet-over-all-paths” solution where
Paths(start, n) denotes the set of paths in CFG from the start node to n.

Recall

MRPn = ⊔
p ∈ RPaths(start, n)

pfp (⊥)

For each node n, MRPn provides a “meet-over-all-realizable-paths” solution
where RPaths(start, n) denotes the set of realizable paths (the path’s word is
in the language L(realizable)) from the start node to n.

MRPn ⊑MOPn
Yue Li @ Nanjing University
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Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q
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Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)
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CallP

RetP

Print(a,g)
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define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)
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define flow functions for edges in G* based on Q
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Let n be a program point, data fact d ∈ MRPn, iff there is
a realizable path in G# from <smain, 0> to <n, d>.
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Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#
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CallP
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Let n be a program point, data fact d ∈ MRPn, iff there is
a realizable path in G# from <smain, 0> to <n, d>.

How to understand?
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Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
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Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
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In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
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x = 0

CallP

RetP

Print(a,g)

Smain

if a > 0

a = a - g

SP

g = 0

CallP

RetP

eP

emain

GpGmain

Yue Li @ Nanjing University



Supergraph
In IFDS, a program is represented by G* = (N*, E*) called a supergraph.
• G* consists of a collection of flow graphs G1, G2,… (one for each procedure)
• Each flowgraph Gp has a unique start node sp, and a unique exit node ep

• A procedure call is represented by a call node Callp, and a return-site node Retp
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G* has three edges for each procedure call:
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Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
variables that may be uninitialized before execution reaches n.
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Design Flow Functions
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Design Flow Functions
“Possibly-uninitialized variables”: for each node n ∈ N*, determine the set of
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Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#
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Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

(at most (D+1)2 edges), where D is a finite set of dataflow facts

0 x g

0 x g

Yue Li @ Nanjing University



Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes

The representation relation of flow function f, Rf ⊆ (D ∪ 0) × (D ∪ 0)
is a binary relation (or graph) defined as follows:

(at most (D+1)2 edges), where D is a finite set of dataflow facts

Rf = { (0,0) }
∪ { (0,y) | y ∈ f(∅) }
∪ { (x,y) | y ∉ f(∅) and y ∈ f({x}) }
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Build Exploded Supergraph
• Build exploded supergraph G# for a program by transforming

flow functions to representation relations (graphs)
• Each flow function can be represented as a graph with 2(D+1) nodes
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Exploded Supergraph G# :
Each node n in supergraph G* is “exploded” into D+1 nodes in G#, and
each edge n1⟶ n2 in G* is “exploded” into the representation relation of
the flow function associated with n1⟶ n2 in G#
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Exploded Supergraph G# :
Each node n in supergraph G* is “exploded” into D+1 nodes in G#, and
each edge n1⟶ n2 in G* is “exploded” into the representation relation of
the flow function associated with n1⟶ n2 in G#

Why we need 0 ⟶ 0 edges?
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Why We Need Edge 0⟶ 0?
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In traditional data flow analysis, to see whether data fact a holds at program
point p, we check if a is in OUT[n4] after the analysis finishes

f4 f3 f2 f1(IN[n1])。。 。OUT[n4] =
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For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
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retrieved by connecting the edges (finding out a
path) on the “pasted” representation relations
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λ S.{a} says a holds at p regardless of input S;
however, without edge 0⟶0,

the representation relation for each edge
cannot be connected or “pasted” together,

like flow functions cannot be composed
together in traditional data flow analysis.

Thus IFDS cannot produce correct solutions via
such disconnected representation relations.

λ S.{a}
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So We Need the “Glue Edge” 0⟶ 0!
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point p, we check if a is in OUT[n4] after the analysis finishes

For the same case, in IFDS, whether data fact
a holds at p depends on if there is a path from
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path) on the “pasted” representation relations
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λ S.{a} says a holds at p regardless of input S;
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the representation relation for each edge
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like flow functions cannot be composed
together in traditional data flow analysis.

Thus IFDS cannot produce correct solutions via
such disconnected representation relations.
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Now, let’s build an exploded supergraph
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Overview of IFDS
Given a program P, and a dataflow-analysis problem Q
• Build a supergraph G* for P and

define flow functions for edges in G* based on Q

• Build exploded supergraph G# for P by transforming
flow functions to representation relations (graphs)

• Q can be solved as graph reachability problems (find out MRP solutions)
via applying Tabulation algorithm on G#
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Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>
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Tabulation Algorithm
Given an exploded supergraph G#, Tabulation algorithm determines the
MRP solution by finding out all realizable paths starting from <smain, 0>

Let n be a program point, data fact d ∈ MRPn, iff there is a realizable
path in G# from <smain, 0> to <n, d>. (then d’s white circle turns to blue)
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Tabulation Algorithm

O(ED3)
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Tabulation Algorithm

No time to cover the
whole algorithm

O(ED3)
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Tabulation Algorithm

No time to cover the
whole algorithm

But we will introduce its
core working mechanism

by a simple example
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Core Working Mechanism of Tabulation Algorithm
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When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).

Yue Li @ Nanjing University



…

…

…

……

…

…

Core Working Mechanism of Tabulation Algorithm

SP

eP

SP’

eP’

CallP

RetP

CallP’’

RetP’’

…

…

……

……

…

…

…

…

……

…

Actually, here a summary edge from <Call,dm> to <Ret,dn>
is added to indicate that dn is reachable from dm through the
called method p’. At the moment, some methods (like p’’)
may not be handled yet, so when handling p’’ later,
redundant work could be avoided for such reachable path.

When handling each exit node (ep’), call-to-return matching
begins: find out the call-sites calling p’ (Callp, Callp’’) and
then find out their corresponding return-sites (Retp, Retp’’).
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When a data fact (at node n) d’s circle is turned to blue,
it means that <n, d> is reachable from <Smain, 0>
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Understanding the Distributivity of IFDS
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• Can we do constant propagation using IFDS?

• Can we do pointer analysis using IFDS?

Constant propagation has infinite domain, but what if we only deal with
finite constant values? Can we still do it using IFDS?

Understanding the Distributivity of IFDS
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Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

• Constant Propagation
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Each flow function in IFDS handles
one input data fact per time



Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
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Given a statement S, besides S itself, if we need to consider
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Understanding the Distributivity of IFDS

• Distributivity

F(x ∧ y) = F(x) ∧ F(y) z = x + y
x y z

z’s value depends on both y’s and x’s

Given a statement S, besides S itself, if we need to consider
multiple input data facts to create correct outputs, then the
analysis is not distributive and should not be expressed in IFDS.

In IFDS, each data fact (circle) and its propagation (edges) could
be handled independently, and doing so will not affect the
correctness of the final results.

• Constant Propagation

Regardless of the infinite domain issue, think about whether we could do
linear constant propagation, e,g., y = 2x + 3, or
copy constant propagation, e.g., x = 2, y = x, using IFDS-style analysis?
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z and y.f should have pointed to object [new T]. However, flow function’s
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Understanding the Distributivity of IFDS

• Pointer Analysis

x = new T

For simplicity, assumewe know the programonly contains these fourstatements whendesigning flow functions

y = x

x.f = x

z = y.f

exit

entry
0 x y x.f zy.f

z and y.f should have pointed to object [new T]. However, flow function’s
input data facts lack of the alias information, alias(x,y), alias(x.f,y.f), and 
we need alias information to produce correct outputs.

Note: If we want to obtain alias information in IFDS,
say alias(x,y), to produce correct outputs, we need
to consider multiple input data facts, x and y, which
cannot be done in standard IFDS as flow functions 
handle input facts independently (one fact per time). 
Thus pointer analysis is non-distributive.

Yue Li @ Nanjing University



Conte
nts

1. Feasible and Realizable Paths

2. CFL-Reachability

3. Overview of IFDS

4. Supergraph and Flow Functions

5. Exploded Supergraph and Tabulation Algorithm

6. Understanding the Distributivity of IFDS
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TheX You Need To Understand in This Lecture

• Understand CFL-Reachability

• Understand the basic idea of IFDS

• Understand what problems can be solved by IFDS

Yue Li @ Nanjing University
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