
Yue Li and Tian Tan

Static Program Analysis

2020 Spring



Static Program Analysis

Nanjing University

Yue Li

2020

Intermediate Representation



Conte
nts

1. Compilers and Static Analyzers

2. AST vs. IR

3. IR: Three-Address Code (3AC)

4. 3AC in Real Static Analyzer: Soot

5. Static Single Assignment (SSA)

6. Basic Blocks (BB)

7. Control Flow Graphs (CFG)

Yue Li @ Nanjing University



Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner
Tokens

Lexical Analysis
You ϡ goouojd

RegularExpression

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Parser
Tokens

AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

RegularExpression

Context-FreeGrammar

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser
Tokens

AST

Decorated
AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser

Translator

Tokens

AST

Decorated
AST

IR

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code
Yue Li @ Nanjing University



Scanner

Type Checker

Parser
Tokens

AST

Decorated
AST

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Source CodeCompiler

Machine Code

Code Generator

Translator
IR

Yue Li @ Nanjing University



Machine Code

Scanner

Type Checker

Parser

Code Generator

Translator

Tokens

AST

Decorated
AST

IR

Lexical Analysis

Syntax Analysis

You ϡ goouojd

Like your hair I

Apples eat you

RegularExpression

Context-FreeGrammar

AttributeGrammarSemantic Analysis

Static Analysis

Source CodeCompiler

e.g., code optimization

Yue Li @ Nanjing University



AST vs. IR

AST

Yue Li @ Nanjing University

<



AST vs. IR

AST IR

(“3-address” form)

Yue Li @ Nanjing University

<



AST vs. IR

AST
• high-level and closed to grammar structure
• usually language dependent
• suitable for fast type checking
• lack of control flow information

IR
• low-level and closed to machine code
• usually language independent
• compact and uniform
• contains control flow information
• usually considered as the basis for static analysis

AST IR

(“3-address” form)

Yue Li @ Nanjing University

<



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t2 = a + b + 3 t1 = a + b
t2 = t1 + 3

Yue Li @ Nanjing University



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Address can be one of the following:

• Name: a, b
• Constant: 3
• Compiler-generated temporary: t1, t2

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Intermediate Representation (IR)

• 3-Address Code (3AC)

There is at most one operator on the right side of an instruction.

t1 = a + b
t2 = t1 + 3

Why called 3-address?

Address can be one of the following:

• Name: a, b
• Constant: 3
• Compiler-generated temporary: t1, t2

Each type of instructions has its own 3AC form

Each 3AC contains atmost 3 addresses

Yue Li @ Nanjing University

t2 = a + b + 3



Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Yue Li @ Nanjing University



Some Common 3AC Forms

• x = y bop z
x, y, z: addresses
bop: binary arithmetic or logical operation
uop: unary operation (minus, negation, casting)
L: a label to represent a program location
rop: relational operator (>, <, ==, >=, <=, etc.)
goto L: unconditional jump
if … goto L: conditional jump

• x = uop y

• x = y

• goto L

• if x goto L

• if x rop y goto L

Let’s see some more real-world complicated forms

Yue Li @ Nanjing University



Soot and Its IR: Jimple

• Soot

Most popular static analysis framework for Java

https://github.com/Sable/soot/wiki/Tutorials
https://github.com/Sable/soot

Soot’s IR is Jimple: typed 3-address code

Yue Li @ Nanjing University

https://github.com/Sable/soot/wiki/Tutorials
https://github.com/Sable/soot


Java Src

Do-While Loop

Yue Li @ Nanjing University



Do-While Loop

3AC(jimple)

Java Src

Yue Li @ Nanjing University



Method Call

Java Src

Yue Li @ Nanjing University



Method Call

Java Src

3AC(jimple)Yue Li @ Nanjing University



Method Call

3AC(jimple)

Java Src

Yue Li @ Nanjing University



Class

Java Src

Yue Li @ Nanjing University



Java Src

3AC(jimple)

Class

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA

Optional material

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• All assignments in SSA are to variables with distinct names

- Give each definition a fresh name
- Propagate fresh name to subsequent uses
- Every variable has exactly one definition

3AC SSA

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1

Yue Li @ Nanjing University



Static Single Assignment (SSA)

• What if a variable use is at control flow merges?

if e

y = x + 7

x0 = 0 x1 = 1

if e

y = x2 + 7

x0 = 0 x1 = 1

x2 = ∅(x0,x1)

- A special merge operator, (called phi-function), is introduced to
select the values at merge nodes

- has the value x0 if the control flow passes through the
true part of the conditional and the value x1 otherwise

∅

∅(x0,x1)

Yue Li @ Nanjing University



Why SSA?

Why not SSA?

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

Why not SSA?

May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

Yue Li @ Nanjing University



Why SSA?

• Flow information is indirectly incorporated into the
unique variable names

• Define-and-Use pairs are explicit
Enable more effective data facts storage and propagation in
some on-demand tasks

Some optimization tasks perform better on SSA (e.g.,
conditional constant propagation, global value numbering)

• SSA may introduce too many variables and phi-functions

• May introduce inefficiency problem when translating
to machine code (due to copy operations)

Why not SSA?

May help deliver some simpler analyses, e.g., flow-insensitive
analysis gains partial precision of flow-sensitive analysis via SSA

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Control Flow Analysis
• Usually refer to building Control Flow Graph (CFG)
• CFG serves as the basic structure for static analysis
• The node in CFG can be an individual 3-address
instruction, or (usually) a Basic Block (BB)

Input: 3AC of P

Output: CFG of P

Yue Li @ Nanjing University



Basic Blocks (BB)

• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that

a = q

if p == q goto B6

b = x + a
c = 2a - b

Yue Li @ Nanjing University



• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX 

Basic Blocks (BB)

Yue Li @ Nanjing University



• Basic blocks (BB) are maximal sequences of consecutive
three-address instructions with the properties that
- It can be entered only at the beginning, i.e., the first
instruction in the block

- It can be exited only at the end, i.e., the last instruction
in the block

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Basic Blocks (BB)

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Now try to design the

algorithm to build

BBs by yourself!

a = q

if p == q goto B6

b = x + a
c = 2a - bX X 

Yue Li @ Nanjing University



How to build Basic Blocks?

INPUT: A sequence of three-address instructions of P
OUTPUT: A list of basic blocks of P

METHOD: (1) Determine the leaders in P
• The first instruction in P is a leader
• Any target instruction of a conditional or
unconditional jump is a leader

• Any instruction that immediately follows a
conditional or unconditional jump is a leader

(2) Build BBs for P
• A BB consists of a leader and all its subsequent
instructions until the next leader

Yue Li @ Nanjing University



How to build Basic Blocks?

INPUT: A sequence of three-address instructions of P
OUTPUT: A list of basic blocks of P

METHOD: (1) Determine the leaders in P
• The first instruction in P is a leader
• Any target instruction of a conditional or
unconditional jump is a leader

• Any instruction that immediately follows a
conditional or unconditional jump is a leader

(2) Build BBs for P
• A BB consists of a leader and all its subsequent
instructions until the next leader

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• The first instruction in P is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• The first instruction in P is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• Any target instruction of a conditional
or unconditional jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• Any target instruction of a conditional
or unconditional jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• (3),(7),(12)

• Any instruction that immediately
follows a conditional or unconditional
jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(1) Determine the leaders in P
• (1)

• (3),(7),(12)

• Any instruction that immediately
follows a conditional or unconditional
jump is a leader

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

Leaders: (1), (3),
(5), (7), (11), (12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

Leaders: (1), (3),
(5), (7), (11), (12)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

• B1 {(1)}
• B2 {(3)}
• B3 {(5)}
• B4 {(7)}
• B5 {(11)}
• B6 {(12)}

Leaders: (1), (3),
(5), (7), (11), (12)

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(1) Determine the leaders in P
• (1)

• (3),(7),(12)
• (5),(11),(12)

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

(2) Build BBs for P
• A BB consists of a leader and all
its subsequent instructions until
the next leader

Leaders: (1), (3),
(5), (7), (11), (12)

• B1 {(1),(2)}
• B2 {(3),(4)}
• B3 {(5),(6)}
• B4 {(7),(8),(9),(10)}
• B5 {(11)}
• B6 {(12)}

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

• B1 {(1),(2)}
• B2 {(3),(4)}
• B3 {(5),(6)}
• B4 {(7),(8),(9),(10)}
• B5 {(11)}
• B6 {(12)}

Input: 3AC of P Output: BBs of P

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: BBs of P

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

B1

B2

B3

B4

(11) goto (3)

(12) return

B5

B6
How to build CFG

on top of BBs?

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

- There is a conditional or unconditional jump from the end
of A to the beginning of B

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

… …A
… …

B … …

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

… …A
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions

goto (i)
… …

A (j)

B … …
X 

Yue Li @ Nanjing University



• The nodes of CFG are basic blocks

goto (i)

Control Flow Graph (CFG)

• There is an edge from block A to block B if and only if

… …
A

(i)

(j)

B … …

goto (i)
… …

A

(i)

(j)

B … …

if e goto (i)A (j)
… …

B … …

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump

goto (i)
… …

A (j)

B … …
X 

Yue Li @ Nanjing University



Control Flow Graph (CFG)

• It is normal to replace the jumps to instruction labels by
jumps to basic blocks

goto (i)
… …

A

(i)

(j)

B … …

goto B
… …

A

B … …

In case of possibly frequent
instruction-level changes

• The nodes of CFG are basic blocks
• There is an edge from block A to block B if and only if

- There is a conditional or unconditional jump from the end
of A to the beginning of B

- B immediately follows A in the original order of instructions
and A does not end in an unconditional jump

Yue Li @ Nanjing University



(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1

(3) z = x * y
(4) if z < x goto (7)

(5) p = x / y
(6) q = p + y

(7) a = q

(11) goto (3)

(12) return

B1

B2

B3

B4

B5

B6

if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Add edges in CFG

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6

There is a conditional or unconditional jump
from the end of A to the beginning of B

Add edges in CFG

Usually we add two nodes, Entry and Exit.
- They do not correspond to executable IR

- A edge from Entry to the BB containing the first
instruction of IR

- A edge to Exit from any BB containing an
instruction that could be the last instruction of IR

Exit

Entry

We say that A is a predecessor of B, and
B is a successor of A

B immediately follows A in the original
order of instructions and A does not end in
an unconditional jump

Yue Li @ Nanjing University



if p == q goto B6

b = x + a
c = 2a - b

x = input
y = x - 1

z = x * y
if z < x goto B4

p = x / y
q = p + y

a = q

goto B2

return

B1

B2

B3

B4

B5

B6
Exit

Entry

(10) if p == q goto (12)

(8) b = x + a
(9) c = 2a - b

(1) x = input
(2) y = x - 1
(3) z = x * y
(4) if z < x goto (7)
(5) p = x / y
(6) q = p + y
(7) a = q

(11) goto (3)
(12) return

Input: 3AC of P Output: CFG of P

Yue Li @ Nanjing University



Summ
ary

1. Compilers and Static Analyzers

2. AST vs. IR

3. IR: Three-Address Code (3AC)

4. 3AC in Real Static Analyzer: Soot

5. Static Single Assignment (SSA)

6. Basic Blocks (BB)

7. Control Flow Graphs (CFG)

Yue Li @ Nanjing University



The X You Need To Understand in This Lecture

• The relation between compilers and static analyzers

• Understand 3AC and its common forms (in IR jimple)

• How to build basic blocks on top of IR

• How to construct control flow graphs on top of BBs?

Yue Li @ Nanjing University



南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析


