
南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析

Static Program Analysis

Nanjing University

Yue Li

2021

Data Flow Analysis — Foundations

Conten
ts (I)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice

5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

Yue Li @ Nanjing University

Con
tent
s (II
)

7. Relate Iterative Algorithm to Fixed Point Theorem

8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Yue Li @ Nanjing University

Let us first recall the iterative algorithm
for data flow analysis

Yue Li @ Nanjing University

This general iterative algorithm produces
a solution to data flow analysis

Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killB and genB computed for each basic block B)
OUTPUT: IN[B] and OUT[B] for each basic block B

METHOD:

IN[B] =UP a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;
while (changes to any OUT occur)
for (each basic block B\entry) {

}

Yue Li @ Nanjing University

View Iterative Algorithm in Another Way

Yue Li @ Nanjing University

• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.

View Iterative Algorithm in Another Way

Yue Li @ Nanjing University

• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.

• Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

as an element of set (V1 × V2 … × Vk) denoted as Vk ,
to hold the values of the analysis after each iteration.

(OUT[n1], OUT[n2], …, OUT[nk])

View Iterative Algorithm in Another Way

Yue Li @ Nanjing University

• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.

• Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

as an element of set (V1 × V2 … × Vk) denoted as Vk ,
to hold the values of the analysis after each iteration.

(OUT[n1], OUT[n2], …, OUT[nk])

• Each iteration can be considered as taking an action to map
an element of Vk to a new element of Vk, through applying
the transfer functions and control-flow handing, abstracted
as a function F: Vk → Vk

View Iterative Algorithm in Another Way

Yue Li @ Nanjing University

• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.

• Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

as an element of set (V1 × V2 … × Vk) denoted as Vk ,
to hold the values of the analysis after each iteration.

(OUT[n1], OUT[n2], …, OUT[nk])

• Each iteration can be considered as taking an action to map
an element of Vk to a new element of Vk, through applying
the transfer functions and control-flow handing, abstracted
as a function F: Vk → Vk

• Then the algorithm outputs a series of k-tuples iteratively
until a k-tuple is the same as the last one in two consecutive
iterations

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

init

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

init
iter 1

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

(𝑣!", 𝑣"", …, 𝑣#")

init
iter 1
iter 2

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

= X0

= X1

= X2

= Xi

= Xi+1

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

Each iteration takes an action
F: Vk → Vk

= X0

= X1

= X2

= Xi

= Xi+1

= F(X0)
= F(X1)

= F(Xi-1)

= F(Xi)

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

= X0

= X1

= X2

= Xi

= Xi+1

= F(X0)
= F(X1)

= F(Xi-1)

= F(Xi)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

Each iteration takes an action
F: Vk → Vk

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

= X0

= X1

= X2

= Xi

= Xi+1

= F(X0)
= F(X1)

= F(Xi-1)

= F(Xi)
∵ Xi = Xi+1

∴ Xi= Xi+1 = F(Xi)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

Each iteration takes an action
F: Vk → Vk

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

= X0

= X1

= X2

= Xi

= Xi+1

= F(X0)
= F(X1)

= F(Xi-1)

= F(Xi)
∵ Xi = Xi+1

∴ Xi= Xi+1 = F(Xi)

X is a fixed point of function F if
X = F(X)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

Each iteration takes an action
F: Vk → Vk

Yue Li @ Nanjing University

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

init

…

iter 1
iter 2

iter i
iter i+1

= X0

= X1

= X2

= Xi

= Xi+1

= F(X0)
= F(X1)

= F(Xi-1)

= F(Xi)
∵ Xi = Xi+1

∴ Xi= Xi+1 = F(Xi)

X is a fixed point of function F if
X = F(X)

Given a CFG (program) with k
nodes, the iterative algorithm
updates OUT[n] for every node
n in each iteration.

Each iteration takes an action
F: Vk → Vk

The iterative algorithm reaches
a fixed point

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

To answer these questions, let us learn some math first

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry

1 ≤ 1, 2 ≤ 2

(3) Transitivity

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry

1 ≤ 1, 2 ≤ 2

(3) Transitivity

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry x ≤ y ∧ y ≤ x then x = y

1 ≤ 1, 2 ≤ 2

(3) Transitivity

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry x ≤ y ∧ y ≤ x then x = y

1 ≤ 1, 2 ≤ 2

(3) Transitivity

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry x ≤ y ∧ y ≤ x then x = y

1 ≤ 1, 2 ≤ 2

(3) Transitivity 1 ≤ 2 ∧ 2 ≤ 3 then 1 ≤ 3

Example 1. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

(1) Reflexivity
(2) Antisymmetry x ≤ y ∧ y ≤ x then x = y

1 ≤ 1, 2 ≤ 2

(3) Transitivity 1 ≤ 2 ∧ 2 ≤ 3 then 1 ≤ 3

Example 2. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents < (less than)?

Yue Li @ Nanjing University

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 2. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents < (less than)?

Yue Li @ Nanjing University

(1) Reflexivity

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 2. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents < (less than)?

Yue Li @ Nanjing University

(1) Reflexivity 1 < 1, 2< 2

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 2. Is (S, ⊑) a poset where S is a set of integers
and ⊑ represents < (less than)?

Yue Li @ Nanjing University

(1) Reflexivity 1 < 1, 2< 2

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

sinpin

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

singing

sing gin

in

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

sinpin

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

singing

sing gin

in

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

sinpin

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

singing

sing gin

in

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

sinpin

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

singing

sing gin

in

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

sinpin

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

singing

sing gin

in

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 3. Is (S, ⊑) a poset where S is a set of English words
and ⊑ represents the substring relation, i.e., s1 ⊑ s2 means s1
is a substring of s2?

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

singing

sing gin

in

sinpin

partial means for a pair of set elements in P, they could be
incomparable; in other words, not necessary that every pair
of set elements must satisfy the ordering ⊑

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Example 4. Is (S, ⊑) a poset where S is the power set of
set {a,b,c} and ⊑ represents ⊆ (subset)?

Yue Li @ Nanjing University

(1) Reflexivity
(2) Antisymmetry
(3) Transitivity

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }partialè incomparable

Partial Order

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
(1) ∀x ∈ P, x ⊑ x (Reflexivity)
(2) ∀x, y ∈ P, x ⊑ y ∧ y ⊑ x ⟹ x = y (Antisymmetry)
(3) ∀x, y, z ∈ P, x ⊑ y ∧ y ⊑ z ⟹ x ⊑ z (Transitivity)

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

Upper and Lower Bounds

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

Upper and Lower Bounds

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

Upper and Lower Bounds

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound

lower bound

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound

lower bound

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound
least upper bound

lower bound

Upper and Lower Bounds

Yue Li @ Nanjing University

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

P

S

upper bound
least upper bound

lower bound
greatest lower bound

Upper and Lower Bounds

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

Usually, if S contains only two elements a and b (S = {a, b}), then
⊔S can be written a ⊔ b (the join of a and b)
⊓S can be written a ⊓ b (the meet of a and b)

• Not every poset has lub or glb

Some Properties

• Not every poset has lub or glb
{a,b,c}

{a,c}

{a} {c}

P
Some Properties

• Not every poset has lub or glb
{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P
according to the definition of glb

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P
according to the definition of glb
g1 ⊑ (g2 =⊓P) and g2 ⊑ (g1 =⊓P)

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P
according to the definition of glb
g1 ⊑ (g2 =⊓P) and g2 ⊑ (g1 =⊓P)
by the antisymmetry of partial order ⊑

• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P
according to the definition of glb
g1 ⊑ (g2 =⊓P) and g2 ⊑ (g1 =⊓P)
by the antisymmetry of partial order ⊑
g1 = g2

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Example 1. Is (S, ⊑) a lattice where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Example 1. Is (S, ⊑) a lattice where S is a set of integers
and ⊑ represents ≤ (less than or equal to)?

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

The ⊔ operator means “max”
and ⊓ operator means “min”

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

sinpin

Example 2. Is (S, ⊑) a lattice where S is a set of
English words and ⊑ represents the substring
relation, i.e., s1 ⊑ s2 means s1 is a substring of s2?

singing

sing gin

in

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

sinpin

Example 2. Is (S, ⊑) a lattice where S is a set of
English words and ⊑ represents the substring
relation, i.e., s1 ⊑ s2 means s1 is a substring of s2?

singing

sing gin

in

pin ⊔ sin = ?

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Example 3. Is (S, ⊑) a lattice where S is the power
set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Example 3. Is (S, ⊑) a lattice where S is the power
set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

The ⊔ operator means ∪
and ⊓ operator means ∩

Lattice

Yue Li @ Nanjing University

Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Semilattice

Given a poset (P, ⊑), ∀a, b ∈ P,
if only a ⊔ b exists, then (P, ⊑) is called a join semilattice
if only a ⊓ b exists, then (P, ⊑) is called a meet semilattice

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 1. Is (S, ⊑) a complete lattice where S is a set
of integers and ⊑ represents ≤ (less than or equal to)?

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 1. Is (S, ⊑) a complete lattice where S is a set
of integers and ⊑ represents ≤ (less than or equal to)?

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

For a subset S+ including all positive integers,
it has no ⊔S+ (+∞)

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 2. Is (S, ⊑) a complete lattice where S is the
power set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 2. Is (S, ⊑) a complete lattice where S is the
power set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Note: the definition of bounds
implies that the bounds are not
necessarily in the subsets (but
they must be in the lattice)

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Every complete lattice (P, ⊑) has
a greatest element = ⊔P called top and
a least element ⊥ = ⊓P called bottom

⊥

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Every complete lattice (P, ⊑) has
a greatest element = ⊔P called top and
a least element ⊥ = ⊓P called bottom

⊥

Every finite lattice (P is finite) is a
complete lattice

Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Every complete lattice (P, ⊑) has
a greatest element = ⊔P called top and
a least element ⊥ = ⊓P called bottom

⊥

Every finite lattice (P is finite) is a
complete lattice

Mostly focused in data flow analysis

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)
• (x1, …, xn) ⊓ (y1, …, yn) = (x1 ⊓1 y1, …, xn⊓n yn)

Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)
• (x1, …, xn) ⊓ (y1, …, yn) = (x1 ⊓1 y1, …, xn⊓n yn)

• A product lattice is a lattice
• If a product lattice L is a product of
complete lattices, then L is also complete

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

s1

s2

s3

IN[s2]

OUT[s1] OUT[s3]
⊔ = ∪

OUT[s2]

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

s1

s2

s3

IN[s2]

OUT[s1] OUT[s3]
⊔ = ∪{a} {b}

OUT[s2]

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

s1

s2

s3

IN[s2]

OUT[s1] OUT[s3]
⊔ = ∪{a} {b}

{a,b}

OUT[s2]

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

s1

s2

s3

IN[s2]

OUT[s1] OUT[s3]
⊔ = ∪{a} {b}

{a,b}

OUT[s2] {a,b,c}
F

Data Flow Analysis Framework via Lattice

Yue Li @ Nanjing University

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

s1

s2

s3

IN[s2]

OUT[s1] OUT[s3]
⊔ = ∪{a} {b}

{a,b}

OUT[s2] {a,b,c}

Data flow analysis can be seen as iteratively applying transfer
functions and meet/join operations on the values of a lattice

F

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

?

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

?
Recall "O

UT never
shrinks”

It is abou
t monoton

icity

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

?
Recall "O

UT never
shrinks”

It is abou
t monoton

icity

?

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

?
Recall "O

UT never
shrinks”

It is abou
t monoton

icity

X

F(X)

?

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating
f(⊥), f(f(⊥)), …, fk(⊥) until a fixed point is reached

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating
f(⊥), f(f(⊥)), …, fk(⊥) until a fixed point is reached

the greatest fixed point of f can be found by iterating
f(), f(f()), …, fk() until a fixed point is reached⊥ ⊥ ⊥

Yue Li @ Nanjing University

Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating
f(⊥), f(f(⊥)), …, fk(⊥) until a fixed point is reached

the greatest fixed point of f can be found by iterating
f(), f(f()), …, fk() until a fixed point is reached⊥ ⊥ ⊥

(1) Existence of fixed point
(2) The fixed point is the least

Let us
prove

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)
As L is finite (its height is H), the values are bounded among

⊥ , f(⊥) , f2(⊥) … fH(⊥)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)
As L is finite (its height is H), the values are bounded among

⊥ , f(⊥) , f2(⊥) … fH(⊥)
When i > H, by pigeonhole principle, there exists k and j that

fk(⊥) = fj(⊥) (assume k < j ≤ H+1)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)
As L is finite (its height is H), the values are bounded among

⊥ , f(⊥) , f2(⊥) … fH(⊥)
When i > H, by pigeonhole principle, there exists k and j that

fk(⊥) = fj(⊥) (assume k < j ≤ H+1)
Further as fk(⊥) ⊑ … ⊑ fj(⊥), we have

fFix = fk(⊥) = fk+1(⊥) = fj(⊥)

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)
As L is finite (its height is H), the values are bounded among

⊥ , f(⊥) , f2(⊥) … fH(⊥)
When i > H, by pigeonhole principle, there exists k and j that

fk(⊥) = fj(⊥) (assume k < j ≤ H+1)
Further as fk(⊥) ⊑ … ⊑ fj(⊥), we have

fFix = fk(⊥) = fk+1(⊥) = fj(⊥)
Thus, the fixed point exists.

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:
As f is monotonic, we have

f(⊥) ⊑ f(x)

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:
As f is monotonic, we have

f(⊥) ⊑ f(x)
Assume fi(⊥) ⊑ fi(x), as f is monotonic, we have

fi+1(⊥) ⊑ fi+1(x)

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:
As f is monotonic, we have

f(⊥) ⊑ f(x)
Assume fi(⊥) ⊑ fi(x), as f is monotonic, we have

fi+1(⊥) ⊑ fi+1(x)
Thus by induction, we have

fi(⊥) ⊑ fi(x)

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:
As f is monotonic, we have

f(⊥) ⊑ f(x)
Assume fi(⊥) ⊑ fi(x), as f is monotonic, we have

fi+1(⊥) ⊑ fi+1(x)
Thus by induction, we have

fi(⊥) ⊑ fi(x)
Thus fi(⊥) ⊑ fi(x) = x, then we have

fFix = fk(⊥) ⊑ x
Thus the fixed point is the least

Yue Li @ Nanjing University

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, i.e., x = f(x)
By the definition of ⊥, we have ⊥ ⊑ x
Induction begins:
As f is monotonic, we have

f(⊥) ⊑ f(x)
Assume fi(⊥) ⊑ fi(x), as f is monotonic, we have

fi+1(⊥) ⊑ fi+1(x)
Thus by induction, we have

fi(⊥) ⊑ fi(x)
Thus fi(⊥) ⊑ fi(x) = x, then we have

fFix = fk(⊥) ⊑ x
Thus the fixed point is the least

The proo
f for grea

test

fixed poin
t is simila

r

Yue Li @ Nanjing University

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating
f(⊥), f(f(⊥)), …, fk(⊥) until a fixed point is reached

the greatest fixed point of f can be found by iterating
f(), f(f()), …, fk() until a fixed point is reached⊥ ⊥ ⊥

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

?
?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

?
?

greatest o
r least

fixed poin
t

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

?
?

greatest o
r least

fixed poin
t

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

Conten
ts (I)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice

5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

Yue Li @ Nanjing University

Con
tent
s (II
)

7. Relate Iterative Algorithm to Fixed Point Theorem

8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Yue Li @ Nanjing University

Static Program Analysis

Nanjing University

Yue Li

2021

Data Flow Analysis — Foundations

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

?
?

greatest o
r least

fixed poin
t

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem
(L, L, …, L) If a product lattice Lk is a product of complete

(and finite) lattices, i.e., (L, L, …, L), then Lk
is also complete (and finite)

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem
(L, L, …, L) If a product lattice Lk is a product of complete

(and finite) lattices, i.e., (L, L, …, L), then Lk
is also complete (and finite)

In each iteration, it is equivalent to think that
we apply function F which consists of

(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for

control-flow confluence

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem
(L, L, …, L) If a product lattice Lk is a product of complete

(and finite) lattices, i.e., (L, L, …, L), then Lk
is also complete (and finite)

In each iteration, it is equivalent to think that
we apply function F which consists of

(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for

control-flow confluence

Now the remaining issue is to
prove that function F is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Gen/Kill function is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L, Gen/Kill function is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z
by transitivity of ⊑, x ⊑ y ⊔ z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z
by transitivity of ⊑, x ⊑ y ⊔ z
thus y ⊔ z is an upper bound for x, and also for z (by ⊔’s definition)

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z
by transitivity of ⊑, x ⊑ y ⊔ z
thus y ⊔ z is an upper bound for x, and also for z (by ⊔’s definition)
as x ⊔ z is the least upper bound of x and z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z
by transitivity of ⊑, x ⊑ y ⊔ z
thus y ⊔ z is an upper bound for x, and also for z (by ⊔’s definition)
as x ⊔ z is the least upper bound of x and z
thus x ⊔ z ⊑ y ⊔ z

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
a basic case of L × L ×… × L,

We want to show that ⊔ is monotonic

Gen/Kill function is monotonic

Proof.
∀x, y, z ∈ L, x ⊑ y, we want to prove x ⊔ z ⊑ y ⊔ z
by the definition of ⊔, y⊑ y ⊔ z
by transitivity of ⊑, x ⊑ y ⊔ z
thus y ⊔ z is an upper bound for x, and also for z (by ⊔’s definition)
as x ⊔ z is the least upper bound of x and z
thus x ⊔ z ⊑ y ⊔ z

Thus the f
ixed point

theorem a
pplies to th

e

iterative a
lgorithm fo

r data flow
analysis

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

?
?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

greatest o
r least

fixed poin
t

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

greatest o
r least

fixed poin
t

YES

YES

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

greatest o
r least

fixed poin
t

YES

YES

?

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

h = 3

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

h = 3

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

…

iter 1
iter 2

iter i
iter i+1

The maximum iterations i
needed to reach the fixed point

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

h = 3

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

…

iter 1
iter 2

iter i
iter i+1

The maximum iterations i
needed to reach the fixed point

In each iteration, assume only one step
in the lattice (upwards or downwards) is
made in one node (e.g., one 0->1 in RD)

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

h = 3

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

…

iter 1
iter 2

iter i
iter i+1

The maximum iterations i
needed to reach the fixed point

In each iteration, assume only one step
in the lattice (upwards or downwards) is
made in one node (e.g., one 0->1 in RD)
Assume the lattice height is h and the
number of nodes in CFG is k

When Will the Algorithm Reach the Fixed Point?

Yue Li @ Nanjing University

The height of a lattice h is the length of the
longest path from Top to Bottom in the lattice. {a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

h = 3

(⊥, ⊥, …, ⊥)
(𝑣!!, 𝑣"!, …, 𝑣#!)
(𝑣!", 𝑣"", …, 𝑣#")

(𝑣!$, 𝑣"$, …, 𝑣#$)
(𝑣!$, 𝑣"$, …, 𝑣#$)

…

iter 1
iter 2

iter i
iter i+1

The maximum iterations i
needed to reach the fixed point

In each iteration, assume only one step
in the lattice (upwards or downwards) is
made in one node (e.g., one 0->1 in RD)
Assume the lattice height is h and the
number of nodes in CFG is k
We need at most i = h*k iterations

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

YES

YES

?

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

• Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

• If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

• When will the algorithm reach the fixed point, or when can
we get the solution?

YES

YES

Worst case of #
iterations:

the product of t
he lattice heigh

t and

the number of
nodes in CFG

Yue Li @ Nanjing University

May and Must Analyses, a Lattice View

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }
⊥

⊥

⊥
⊥

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }
⊥

⊥

Assume this lattice is a result of the
product lattice we introduced before

⊥
⊥

⊥
⊥

Yue Li @ Nanjing University

⊥
⊥

No definitions
can reach Unsafe result

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Safe

Unsafe

Yue Li @ Nanjing University

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

⊥

⊥

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Safe

Unsafe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Safe

Unsafe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result All expressions
must be available

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result All expressions
must be available

Safe but
Useless result

No expressions
are available

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Safe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Safe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Fixed Points

Safe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Fixed Points

Greatest
Fixed Point Safe

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Fixed Points

Greatest
Fixed Point Safe

Less
Precise

Yue Li @ Nanjing University

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Fixed Points

Greatest
Fixed Point Safe

Less
Precise

Yue Li @ Nanjing University

Another view to explain greatest/least fixed point?
(“minimal step” by meet/join)

⊥
⊥

All definitions
may reach

Safe but
Useless result

No definitions
can reach Unsafe result

Truth

Fixed Points

Least
Fixed Point

Safe

Unsafe

Less
Precise

⊥
⊥

Unsafe result

Unsafe

All expressions
must be available

Safe but
Useless result

No expressions
are available

Truth

Fixed Points

Greatest
Fixed Point Safe

Less
Precise

Yue Li @ Nanjing University

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

P = Entry à S1 à S2 à … à Si

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

P = Entry à S1 à S2 à … à Si

Transfer function FP for a path P (from Entry
to Si) is a composition of transfer functions for
all statements on that path: fS1, fS2, …, fSi-1

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

…

P = Entry à S1 à S2 à … à Si

Transfer function FP for a path P (from Entry
to Si) is a composition of transfer functions for
all statements on that path: fS1, fS2, …, fSi-1

MOP[Si] = ⊔/⊓
A path P from Entry to Si

FP(OUT[Entry])

⊔/⊓

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

…

P = Entry à S1 à S2 à … à Si

Transfer function FP for a path P (from Entry
to Si) is a composition of transfer functions for
all statements on that path: fS1, fS2, …, fSi-1

MOP[Si] = ⊔/⊓
A path P from Entry to Si

FP(OUT[Entry])

⊔/⊓
MOP computes the data-flow values at the end of
each path and apply join / meet operator to these
values to find their lub / glb

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

…

P = Entry à S1 à S2 à … à Si

Transfer function FP for a path P (from Entry
to Si) is a composition of transfer functions for
all statements on that path: fS1, fS2, …, fSi-1

MOP[Si] = ⊔/⊓
A path P from Entry to Si

FP(OUT[Entry])

⊔/⊓
MOP computes the data-flow values at the end of
each path and apply join / meet operator to these
values to find their lub / glb

Some paths may be not executableè not fully precise
.

How Precise Is Our Solution?

Yue Li @ Nanjing University

• Meet-Over-All-Paths Solution (MOP)

Entry

S1

S2

…

Si-1

Si

…

P = Entry à S1 à S2 à … à Si

Transfer function FP for a path P (from Entry
to Si) is a composition of transfer functions for
all statements on that path: fS1, fS2, …, fSi-1

MOP[Si] = ⊔/⊓
A path P from Entry to Si

FP(OUT[Entry])

⊔/⊓
MOP computes the data-flow values at the end of
each path and apply join / meet operator to these
values to find their lub / glb

Some paths may be not executableè not fully precise
Unbounded, and not enumerableè impractical

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

IN[s4] = 𝑓&! (𝑓&" (OUT[Entry]) ⊔ 𝑓&# (OUT[Entry]))

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

IN[s4] = 𝑓&! (𝑓&" (OUT[Entry]) ⊔ 𝑓&# (OUT[Entry]))

MOP[s4] = 𝑓&! (𝑓&" (OUT[Entry])) ⊔ 𝑓&! (𝑓&# (OUT[Entry]))

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

IN[s4] = 𝑓&! (𝑓&" (OUT[Entry]) ⊔ 𝑓&# (OUT[Entry]))

MOP[s4] = 𝑓&! (𝑓&" (OUT[Entry])) ⊔ 𝑓&! (𝑓&# (OUT[Entry]))

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

IN[s4] = 𝑓&! (𝑓&" (OUT[Entry]) ⊔ 𝑓&# (OUT[Entry]))

MOP[s4] = 𝑓&! (𝑓&" (OUT[Entry])) ⊔ 𝑓&! (𝑓&# (OUT[Entry]))

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Entry

S1 S2

S3

S4

IN[s4] = 𝑓&! (𝑓&" (OUT[Entry]) ⊔ 𝑓&# (OUT[Entry]))

MOP[s4] = 𝑓&! (𝑓&" (OUT[Entry])) ⊔ 𝑓&! (𝑓&# (OUT[Entry]))

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

?

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

When F is distributive, i.e.,
F(x ⊔ y) = F(x) ⊔ F(y)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

When F is distributive, i.e.,
F(x ⊔ y) = F(x) ⊔ F(y)

MOP = Ours

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

When F is distributive, i.e.,
F(x ⊔ y) = F(x) ⊔ F(y)

MOP = Ours
(Ours is as precise as MOP)

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

When F is distributive, i.e.,
F(x ⊔ y) = F(x) ⊔ F(y)

MOP = Ours
(Ours is as precise as MOP)

Bit-vector or Gen/Kill problems (set union

/intersection for join/meet) are distributive

Ours (Iterative Algorithm) vs. MOP

Yue Li @ Nanjing University

By definition of lub ⊔, we have
x ⊑ x ⊔ y and y ⊑ x ⊔ y

As transfer function F is monotonic, we have
F(x) ⊑ F(x ⊔ y) and F(y) ⊑ F(x ⊔ y)

That means F(x ⊔ y) is an upper bound of F(x) and F(y)
As F(x) ⊔ F(y) is the lub of F(x) and F(y), we have

F(x) ⊔ F(y) ⊑ F(x ⊔ y)
MOP⊑ Ours

(Ours is less precise than MOP)

Ours = F(x ⊔ y)
MOP = F(x) ⊔ F(y)

When F is distributive, i.e.,
F(x ⊔ y) = F(x) ⊔ F(y)

MOP = Ours
(Ours is as precise as MOP)

Bit-vector or Gen/Kill problems (set union

/intersection for join/meet) are distributiveBut som
e analys

es are no
t distribu

tive

Constant Propagation

Yue Li @ Nanjing University

Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

Constant Propagation

Yue Li @ Nanjing University

Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where x is a variable and v is the value held by x after that node

Constant Propagation

Yue Li @ Nanjing University

Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where x is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

Constant Propagation

Yue Li @ Nanjing University

Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where x is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V

Constant Propagation

Yue Li @ Nanjing University

Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where x is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V?
?

Constant Propagation – Lattice

Yue Li @ Nanjing University

• Domain of the values V

• Meet Operator ⊓

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v Uninitialized variables are not the focus

in our constant propagation analysis

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v Uninitialized variables are not the focus

in our constant propagation analysis
c ⊓ v = ?

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v Uninitialized variables are not the focus

in our constant propagation analysis
c ⊓ v = ?
- c ⊓ c = c
- c1 ⊓ c2 = NAC

Constant Propagation – Lattice

Yue Li @ Nanjing University

UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v Uninitialized variables are not the focus

in our constant propagation analysis
c ⊓ v = ?
- c ⊓ c = c
- c1 ⊓ c2 = NAC

At each path confluence PC, we should
apply “meet” for all variables in the
incoming data-flow values at that PC

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y;

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y; gen = {(x, val(y))}

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y; gen = {(x, val(y))}
• s: x = y op z; gen = {(x, f(y,z))}

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y; gen = {(x, val(y))}
• s: x = y op z; gen = {(x, f(y,z))}

f(y,z) =
val(y) op val(z) // if val(y) and val(z) are constants
NAC // if val(y) or val(z) is NAC
UNDEF // otherwise

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Transfer Function

Yue Li @ Nanjing University

Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y; gen = {(x, val(y))}
• s: x = y op z; gen = {(x, f(y,z))}

f(y,z) =
val(y) op val(z) // if val(y) and val(z) are constants
NAC // if val(y) or val(z) is NAC
UNDEF // otherwise

(if s is not an assignment statement, F is the identity function)

(we use val(x) to denote the lattice value that variable x holds)

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) =
F(X) ⊓ F(Y) =

X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) =

X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) = {(a, NAC), (b, NAC), (c, 10)}

X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) = {(a, NAC), (b, NAC), (c, 10)}

F(X ⊓ Y) ≠ F(X) ⊓ F(Y)

X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) = {(a, NAC), (b, NAC), (c, 10)}

F(X ⊓ Y) ≠ F(X) ⊓ F(Y)
F(X ⊓ Y) ⊑ F(X) ⊓ F(Y)X Y

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) = {(a, NAC), (b, NAC), (c, 10)}

F(X ⊓ Y) ≠ F(X) ⊓ F(Y)
F(X ⊓ Y) ⊑ F(X) ⊓ F(Y)X Y

Show our co
nstant propa

gation

analysis is m
onotonic

Constant Propagation – Nondistributivity

Yue Li @ Nanjing University

Entry

a = 1

c = a + b

b = 9
a = 9
b = 1

F(X ⊓Y) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) ⊓ F(Y) = {(a, NAC), (b, NAC), (c, 10)}

F(X ⊓ Y) ≠ F(X) ⊓ F(Y)
F(X ⊓ Y) ⊑ F(X) ⊓ F(Y)X Y

Show our co
nstant propa

gation

analysis is m
onotonic

Yue Li @ Nanjing University

Worklist Algorithm,

an optimization of Iterative Algorithm

Review Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killB and genB computed for each basic block B)
OUTPUT: IN[B] and OUT[B] for each basic block B

METHOD:

IN[B] = ⊔P a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;
while (changes to any OUT occur)
for (each basic block B\entry) {

}

Yue Li @ Nanjing University

Worklist Algorithm

IN[B] = ⊔P a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;

while (Worklist is not empty)
Pick a basic block B from Worklist

Yue Li @ Nanjing University

Worklist ← all basic blocks

old_OUT = OUT[B]

if (old_OUT ≠ OUT[B])
Add all successors of B to Worklist

Forward Analysis

Worklist Algorithm

IN[B] = ⊔P a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;

while (Worklist is not empty)
Pick a basic block B from Worklist

Yue Li @ Nanjing University

Worklist ← all basic blocks

old_OUT = OUT[B]

if (old_OUT ≠ OUT[B])
Add all successors of B to Worklist

Forward Analysis

OUT will not change if IN does not change

Summ
ary (I

)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice

5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

Yue Li @ Nanjing University

Sum
mar
y (I
I)

7. Relate Iterative Algorithm to Fixed Point Theorem

8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Yue Li @ Nanjing University

TheX You Need To Understand in This Lecture

• Understand the functional view of iterative algorithm

Yue Li @ Nanjing University

• The definitions of lattice and complete lattice

• How to summarize may and must analyses in lattices
• Understand the fixed-point theorem

• The relation between MOP and the solution produced
by the iterative algorithm

• Constant propagation analysis

• Worklist algorithm

Assignment Two:
Constant propagation and worklist solver

