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Let us first recall the iterative algorithm
for data flow analysis

Yue Li @ Nanjing University

This general iterative algorithm produces
a solution to data flow analysis



Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killB and genB computed for each basic block B)
OUTPUT: IN[B] and OUT[B] for each basic block B

METHOD:

IN[B] =UP a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;
while (changes to any OUT occur)
for (each basic block B\entry) {

}

Yue Li @ Nanjing University



View Iterative Algorithm in Another Way
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• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.
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• Given a CFG (program) with k nodes, the iterative algorithm
updates OUT[n] for every node n in each iteration.

• Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

as an element of set (V1 × V2 … × Vk) denoted as Vk ,
to hold the values of the analysis after each iteration.

(OUT[n1], OUT[n2], …, OUT[nk])

• Each iteration can be considered as taking an action to map
an element of Vk to a new element of Vk, through applying
the transfer functions and control-flow handing, abstracted
as a function F: Vk → Vk

• Then the algorithm outputs a series of k-tuples iteratively
until a k-tuple is the same as the last one in two consecutive
iterations
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To answer these questions, let us learn some math first



Partial Order

Yue Li @ Nanjing University

We define poset as a pair (P, ⊑) where ⊑ is a binary relation that
defines a partial ordering over P, and ⊑ has the following properties:
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Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
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Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.
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Upper and Lower Bounds

Given a poset (P, ⊑) and its subset S that S ⊆ P, we say that
u ∈ P is an upper bound of S, if ∀x ∈ S, x ⊑ u. Similarly,
l ∈ P is an lower bound of S, if ∀x ∈ S, l ⊑ x.

We define the least upper bound (lub or join) of S, written ⊔S,
if for every upper bound of S, say u, ⊔S ⊑ u. Similarly,
We define the greatest lower bound (glb, or meet) of S, written ⊓S,
if for every lower bound of S, say l, l ⊑ ⊓S.

Usually, if S contains only two elements a and b (S = {a, b}), then
⊔S can be written a ⊔ b (the join of a and b)
⊓S can be written a ⊓ b (the meet of a and b)
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• Not every poset has lub or glb

• But if a poset has lub or glb, it will be unique

{a,b,c}

{a,c}

{a} {c}

P

no glb

Some Properties

Proof.
assume g1 and g2 are both glbs of poset P
according to the definition of glb
g1 ⊑ (g2 =⊓P) and g2 ⊑ (g1 =⊓P)
by the antisymmetry of partial order ⊑
g1 = g2
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Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

The ⊔ operator means “max”
and ⊓ operator means “min”
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Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

sinpin

Example 2. Is (S, ⊑) a lattice where S is a set of
English words and ⊑ represents the substring
relation, i.e., s1 ⊑ s2 means s1 is a substring of s2?

singing

sing gin

in

pin ⊔ sin = ?
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Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice
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least upper bound and a greatest lower bound

Example 3. Is (S, ⊑) a lattice where S is the power
set of set {a,b,c} and ⊑ represents ⊆ (subset)?
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The ⊔ operator means ∪
and ⊓ operator means ∩
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Given a poset (P, ⊑), ∀a, b ∈ P, if a ⊔ b and a ⊓ b exist, then
(P, ⊑) is called a lattice

A poset is a lattice if every pair of its elements has a
least upper bound and a greatest lower bound

Semilattice

Given a poset (P, ⊑), ∀a, b ∈ P,
if only a ⊔ b exists, then (P, ⊑) is called a join semilattice
if only a ⊓ b exists, then (P, ⊑) is called a meet semilattice
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Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

For a subset S+ including all positive integers,
it has no ⊔S+ (+∞)



Complete Lattice

Yue Li @ Nanjing University

Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 2. Is (S, ⊑) a complete lattice where S is the
power set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }



Complete Lattice
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Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

Example 2. Is (S, ⊑) a complete lattice where S is the
power set of set {a,b,c} and ⊑ represents ⊆ (subset)?

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Note: the definition of bounds
implies that the bounds are not
necessarily in the subsets (but
they must be in the lattice)
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Given a lattice (P, ⊑), for arbitrary subset S of P, if ⊔S and
⊓S exist, then (P, ⊑) is called a complete lattice

All subsets of a lattice have a least upper bound and a
greatest lower bound

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{ }

Every complete lattice (P, ⊑) has
a greatest element = ⊔P called top and
a least element ⊥ = ⊓P called bottom

⊥

Every finite lattice (P is finite) is a
complete lattice

Mostly focused in data flow analysis
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we can have a product lattice Ln = (P, ⊑) that is defined by:



Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn



Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)



Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)



Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)
• (x1, …, xn) ⊓ (y1, …, yn) = (x1 ⊓1 y1, …, xn⊓n yn)



Product Lattice

Yue Li @ Nanjing University

Given lattices L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n), if for all i,
(Pi, ⊑i) has ⊔i (least upper bound) and ⊓i (greatest lower bound), then
we can have a product lattice Ln = (P, ⊑) that is defined by:
• P = P1 × … × Pn
• (x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧… ∧ (xn ⊑ yn)
• (x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)
• (x1, …, xn) ⊓ (y1, …, yn) = (x1 ⊓1 y1, …, xn⊓n yn)

• A product lattice is a lattice
• If a product lattice L is a product of
complete lattices, then L is also complete
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A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
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meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V
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Data flow analysis can be seen as iteratively applying transfer
functions and meet/join operations on the values of a lattice

F
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Monotonicity

A function f: L→ L (L is a lattice) is monotonic if ∀x, y ∈ L,
x ⊑ y ⟹ f(x) ⊑ f(y)

Fixed-Point Theorem

Given a complete lattice (L, ⊑), if
(1) f: L→ L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating
f(⊥), f(f(⊥)), …, fk(⊥) until a fixed point is reached

the greatest fixed point of f can be found by iterating
f( ), f(f( )), …, fk( ) until a fixed point is reached⊥ ⊥ ⊥

(1) Existence of fixed point
(2) The fixed point is the least

Let us
prove
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Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of ⊥ and f: L→ L, we have

⊥ ⊑ f(⊥)
As f is monotonic, we have

f(⊥) ⊑ f(f(⊥)) = f2(⊥)
By repeatedly applying f, we have an ascending chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ … ⊑ fi(⊥)
As L is finite (its height is H), the values are bounded among

⊥ , f(⊥) , f2(⊥) … fH(⊥)
When i > H, by pigeonhole principle, there exists k and j that

fk(⊥) = fj(⊥) (assume k < j ≤ H+1)
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Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our
iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible
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(L, L, …, L) If a product lattice Lk is a product of complete

(and finite) lattices, i.e., (L, L, …, L), then Lk
is also complete (and finite)

In each iteration, it is equivalent to think that
we apply function F which consists of

(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for

control-flow confluence

Now the remaining issue is to
prove that function F is monotonic
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In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function fi: L → L for every node
(2) join/meet function ⊔/⊓: L×L→ L for control-flow confluence

Actually the binary operator is
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Another view to explain greatest/least fixed point?
(“minimal step” by meet/join)
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⊔/⊓
MOP computes the data-flow values at the end of
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Some paths may be not executableè not fully precise
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Given a variable x at program point p, determine whether x is
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where x is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
• D: a direction of data flow: forwards or backwards
• L: a lattice including domain of the values V and a

meet ⊓ or join ⊔ operator
• F: a family of transfer functions from V to V?
?
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UNDEF

-1 0 1 2-2… …

NAC

• Domain of the values V

• Meet Operator ⊓

NAC ⊓ v = NAC
UNDEF ⊓ v = v Uninitialized variables are not the focus

in our constant propagation analysis
c ⊓ v = ?
- c ⊓ c = c
- c1 ⊓ c2 = NAC

At each path confluence PC, we should
apply “meet” for all variables in the
incoming data-flow values at that PC
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Given a statement s: x = …, we define its transfer function F as

• s: x = c; // c is a constant

F: OUT[s] = gen ∪ (IN[s] – {(x, _)})

gen = {(x, c)}
• s: x = y; gen = {(x, val(y))}
• s: x = y op z; gen = {(x, f(y,z))}

f(y,z) =
val(y) op val(z) // if val(y) and val(z) are constants
NAC // if val(y) or val(z) is NAC
UNDEF // otherwise

(if s is not an assignment statement, F is the identity function)

(we use val(x) to denote the lattice value that variable x holds)
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Worklist Algorithm,

an optimization of Iterative Algorithm



Review Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killB and genB computed for each basic block B)
OUTPUT: IN[B] and OUT[B] for each basic block B

METHOD:

IN[B] = ⊔P a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;
while (changes to any OUT occur)
for (each basic block B\entry) {

}

Yue Li @ Nanjing University
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IN[B] = ⊔P a predecessor of B OUT[P];

OUT[B] = genB U (IN[B] - killB);

OUT[entry] = ∅;
for (each basic block B\entry)

OUT[B] = ∅;

while (Worklist is not empty)
Pick a basic block B from Worklist
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Worklist ← all basic blocks

old_OUT = OUT[B]

if (old_OUT ≠ OUT[B])
Add all successors of B to Worklist

Forward Analysis

OUT will not change if IN does not change



Summ
ary (I

)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice

5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

Yue Li @ Nanjing University



Sum
mar
y (I
I)

7. Relate Iterative Algorithm to Fixed Point Theorem

8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Yue Li @ Nanjing University



TheX You Need To Understand in This Lecture

• Understand the functional view of iterative algorithm

Yue Li @ Nanjing University

• The definitions of lattice and complete lattice

• How to summarize may and must analyses in lattices
• Understand the fixed-point theorem

• The relation between MOP and the solution produced
by the iterative algorithm

• Constant propagation analysis

• Worklist algorithm

Assignment Two:
Constant propagation and worklist solver


