T A g R

BEI Yo

N 7 0 B X g

o S B

Static Program Analysis

Pointer Analysis

Nanjing University

Tian Tan

2021

Contents

Motivation
Introduction to Pointer Analysis
Key Factors of Pointer Analysis

> w N e

Concerned Statements

Contents

> w N e

Motivation

Introduction to Pointer Analysis
Key Factors of Pointer Analysis
Concerned Statements

Problem of CHA

void foo() {

Number n = new One();
=) int x = n.get();
}

interface Number {
int get();

}

class Zero implements Number {
public int get() { return 0; }

}

class One implements Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

Tian Tan @ Nanjing University

Problem of CHA "

WV

void foo() { » Z2call targets

Number n = new One();
=) int x = n.get();
}

interface Number {
int get();

}

class Zero implements Number {
public int get() { return 0; }

}

class One implements Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

Tian Tan @ Nanjing University

PrOblem Of CHA CHA: based on

class hierarchy

void foo() { e 3 call targets
Number| n

=) int X

AL
\ ~
} \ S AN
AV 3 (N

[l
-]
0Q
D
+
—~
2?/

interface Number {
int get();

} A

class Zero 1mp1emgﬁts NuMber {
public int get() { ﬂeturn 9; }

} I III

class One 1mplemeptsINumber {
public int get()/{ return 1; }

}

class Two implemegts Number {
public int get() { return 2; }

~ -
Semm=—"

~

\ \
\ \
\ \
1 1
1 1
1 1
]]
I]

/]

I I

~

}

Tian Tan @ Nanjing University

Problem of CHA

void foo() {
Number| n

=) int X

AL
\ ~
} \ N AN
AV 3 (N

[l
-]
0Q
D
+
—~
2?/

interface Number {
int get();

} A

class Zero 1mp1emgﬁts NuMber {
public int get() { ﬂeturn 9; }

} I III

class One 1mplemeptsINumber {
public int get()/{ return 1; }

}

class Two implemegts Number {
public int get() { return 2; }

~ -
Semm=—"

~

\ \
\ \
1 1
1 1
1 1
I 1
I 1
1 I
1 1
l 1

~

}

CHA: based on
class hierarchy
e 3 call targets

Constant propagation
¢ x=2

Tian Tan @ Nanjing University

Problem of CHA

void foo() {
Number| n

=) int X

AL
\ ~
} \ N AN
AV 3 (N

[l
-]
0Q
D
+
—~
2?/

interface Number {
int get();

} A

class Zero 1mp1emgﬁts NuMber {
public int get() { ﬂeturn 9; }

} I III

class One 1mplemeptsINumber {
public int get()/{ return 1; }

}

class Two implemegts Number {
public int get() { return 2; }

~ -
Semm=—"

~

\ \
\ \
1 1
1 1
1 1
I 1
I 1
1 I
1 1
l 1

~

}

CHA: based on
class hierarchy
e 3 call targets

Constant propagation
e x=NAC

Tian Tan @ Nanjing University

Problem of CHA

void foo() {
n

Number| n = new One();
== int x = n.get()g.
} ‘\\\\:\ :s\\\
VNN
“‘ NN
. \ \
interface Number { v 1} Y
int get(); A
} ',' II' 'l'
l

class Zero 1mp1emgﬁts NuMber {
public int get() { #eturn 9; }

} I lll

class One 1mplemeptslNumber {
public int get()/{ return 1; }

}

class Two implemegts Number {
public int get() { return 2; }

}

CHA: based-en only considers
class hierarchy
* 3 call targets 3
2 false positives/{,}

Constant propagation
e x=NAC

imprecise

Tian Tan @ Nanjing University 10

Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { X

int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

CHA: based-en only considers
class hierarchy
e 3 call targets

Constant propagation
* x=NAC

imprecise

Pointer analysis: based on
points-to relation
e 1 call target

Tian Tan @ Nanjing University 11

Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { X
int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

CHA: based-en only considers
class hierarchy
e 3 call targets

Constant propagation
* x=NAC

imprecise

Pointer analysis: based on
points-to relation
e 1 call target

Constant propagation
e x=1

Tian Tan @ Nanjing University 12

Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { j
int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

CHA: based-en only considers

class hierarchy

e 3 call targets / A

» 2 false positives /1\ ; %\J\
RN

Constant propagation

e x=NAC

imprecise

Pointer analysis: based on
points-to relation
e 1 call target

e 0 false positive

Constant propagation

e x=1 precise

Tian Tan @ Nanjing University 13

Contents

= W

Motivation
Introduction to Pointer Analysis
Key Factors of Pointer Analysis
Concerned Statements

Tian/Tan @ Nanjing University

14

Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to

15

Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to

* For object-oriented programs (focus on Java)
 Computes which objects a pointer (variable or field) can point to

16

Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to

* For object-oriented programs (focus on Java)
 Computes which objects a pointer (variable or field) can point to

* Regarded as a may-analysis

 Computes an over-approximation of the set of objects that a pointer
can point to, i.e., we ask “a pointer may point to which objects?”

17

Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to

* For object-oriented programs (focus on Java)
 Computes which objects a pointer (variable or field) can point to

* Regarded as a may-analysis

 Computes an over-approximation of the set of objects that a pointer
can point to, i.e., we ask “a pointer may point to which objects?”

A research area with 40+ years of history
» William E. Weihl, “Interprocedural Data Flow Analysis in the Presence
of Pointers, Procedure Variables, and Label Variables”. POPL 1980.

Still an active area today
> OOPSLA’18, FSE’18, TOPLAS’19, OOPSLA’19, TOPLAS’20, OOPSLA’21 ...

Tian Tan @ Nanjing University 18

Example

“Which objects a pointer can point to?”

Program

void foo() {
A a = new A();
B x = new B();
a.setB(x);
By = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Tian Tan @ Nanjing University

Points-to relations

19

Example

“Which objects a pointer can point to?”

Program

void foo() {
a = new A();

WY W
X
Il
-
)
=
w
P
N’
\o

y = a.getB();

class A {
B b;

void setB(B b) { this.b = b; }
B getB() { return this.b; }

Tian Tan @ Nanjing University

Points-to relations

Variable Object

a new A

X new B

20

Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object
A a = new A(); 3 new A
B x = new B();

) 5,setB(x);- 0 O \ X new B

By =a.getB(); | this ?J

) / b ?

class A { f

Bb; ¥
mmmms) vOid setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Tian Tan @ Nanjing University 21

Example

“Which objects a pointer can point to?”

Program Points-to relations
void foo() { Variable Object
A a = new A(); 3 new A
B x = new B();
) 5,.setB(x);-" O \ X new B
By =a.getB(); | this new A
} ,:" b new B
class A { f
B by, ¥

mmmms) vOid setB(B b) { this.b = b; }
B getB() { return this.b; }
}

Tian Tan @ Nanjing University 22

Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A
B x = new B();

—) a.setB(X); """""""""" \ X new B

By = a.getB(); X this new A
} ; b new B
class A { f -
B b; #
void setB(B b) { this.b = b; } ¢—— Field Object
B getB() { return this.b; } new A.b | new B
} | — |

Tian Tan @ Nanjing University 23

Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A

B x = new B();

a.setB(x); X new B

) By = a.getB();"\ this new A

} \". b new B
class A { ,': y ?)

B b; .-’

v01d-setB(B b) { this.b = b; } Field Object

B getB() { return this.b; } ¢ new A.b | new B
} | —

Tian Tan @ Nanjing University 24

Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A
B x = new B();
a.setB(x); X new B
) By = a.getB();"\ this new A
} \ b new B
class A { ,': y new B
B b; ---mmmmmmmmeee’
v01d-setB(B b) { this.b = b; } Field Object
\ B getB() { return this.b; } ¢ new A.b | new B

Tian Tan @ Nanjing University 25

Example

“Which objects a pointer can point to?”

Pointer : :
Program m ointe m Points-to relations
Analysis

void foo() { Variable Object

A a = new A(); 3 new A

B x = new B();

a.setB(x); X new B

By = a.getB(); this new A
} b new B
class A { y new B

B b;

void setB(B b) { this.b = b; } Field Object
B getB() { return this.b; } new A.b | new B
} > | |

Tian Tan @ Nanjing University 26

Pointer Analysis and Alias Analysis

Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?

27

Pointer Analysis and Alias Analysis

Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?

If two pointers, say p and g, refer to the same object, then p
and g are aliases

p = new C();

q=p; p and g are aliases

X = new X(); x and y are not aliases
y = new Y();

28

Pointer Analysis and Alias Analysis

Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?

If two pointers, say p and g, refer to the same object, then p
and g are aliases

p = new C();

q=p; p and g are aliases

X = new X(); x and y are not aliases
y = new Y();

Alias information can be derived from points-to relations

29

Applications of Pointer Analysis

e Fundamental information
o Call graph, aliases, ...

* Compiler optimization
o Virtual call inlining, ...

* Bug detection
o Null pointer detection, ...

e Security analysis

o Information flow analysis, “Pointer analysis is one of the most
fundamental static program analyses,

* And many more ... on which virtually all others are built.”*

30

e Fundamental information
o Call graph, aliases, ...

* Compiler optimization
o Virtual call inlining, ...

* Bug detection
o Null pointer detection, ...

@@@@ ©SSS DAGSTUHL - LZI GMBH
rrrmr |icensed under Creative Commons License CC BY-NC-ND

e Security analysis

o Information flow analysis, “Pointer analysis is one of the most
fundamental static program analyses,

* And many more ... on which virtually all others are built.”*

*Pointer Analysis - Report from Dagstuhl Seminar 13162. 2013.

Tian Tan @ Nanjing University 31

Contents L)

Motivation
Introduction to Pointer” \nalysis

Key Factors of Pointer Analysis

=l N =

Concerned Statements

32

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

33

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 34

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity | How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope | Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 35

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity | How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope | Which parts of program |* Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 36

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program |* Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 37

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 38

Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

Tian Tan @ Nanjing University

39

Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

* To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

Tian Tan @ Nanjing University 40

Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

* To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

Dynamic execution Static analysis

"IN JK XK B 3K) abstracted ® o
oo o0 o). 1@ o [
Unbounded concrete objects Bounded abstract objects

Tian Tan @ Nanjing University 41

Heap Abstraction

=
Unbounded g
heap memory é‘-
'_Ez
Store based Hybrid Storeless =
model model model =
Generic

instrumentation b
predicates 2
k- Higher-order k- igher-order §
limiting logics limiting logics 3
_ Generic £
Allocation | instrumentation Ceneric g
sites Y predicates Patterns instrumentation @

Variables predicates

Figure 2. Heap memory can be modeled as storeless, store based, or hybrid. These models are
summarized using allocation sites, k-limiting, patterns, variables, other generic instrumentation
predicates, or higher-order logics.

Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016

Tian Tan @ Nanjing University 42

Heap Abstraction

o
<
Unbounded g
heap memory 2
_
-
w
Store based \ =
model : =
Generic
Imstrumentation b
predicates B
. . =
k- Higher-order k- igher-order .2
limiting logics limiting logics S
: Generic £
AHO_?:&UOH instrumentation Ceneric %
sites Y predicates Patterns instrumentation @

Variables predicates

Figure 2. Heap memory can be modeled as storeless, store based, or hybrid. These models are
summarized using allocation sites, k-limiting, patterns, variables, other generic instrumentation
predicates, or higher-order logics.

Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016

Tian Tan @ Nanjing University 43

Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

44

Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (1 =0; 1< 3; ++1) {
a = new A();

...
. 0

B~ wN

} 0,, iterationi = ©
. 0y, iterationi = 1
0,, iterationi = 2

0
..

Dynamic execution

Tian Tan @ Nanjing University 45

Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (i = 0; 1 < 3; ++1) {
a = new A();

...
. 0

B~ wN

} . 0y, iterationi = @ abstracted l
i 0,,iterationi = : > 0,
0,, iterationi = 2

=

0
..

Allocation-site
Dynamic execution abstraction

Tian Tan @ Nanjing University 46

Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (i = 0; 1 < 3; ++1) {
a = new A();

...
. 0

B~ wN

} . 0y, iterationi = @ abstracted l
i 0,,iterationi = : > 0,
0,, iterationi = 2

=

The number of alloCation SITES “rrrrerreeeeeessssssssssssmssssseeeeeeens
in a program is bounded,
thus the abstract objects must
be finite.

Allocation-site
Dynamic execution abstraction

Tian Tan @ Nanjing University a7

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 48

Context Sensitivity

How to model calling contexts?

Context-sensitive

Distinguish different calling contexts of a
method

Context-insensitive

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Tian Tan @ Nanjing University

49

Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.foo(x); b.foo(y);
v v R
Context 1: »L Context 2: »L
void foo(T p) { void foo(T p) {
} }

Tian Tan @ Nanjing University 50

Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.fool(x)s b.focl)(y); a.foo(x); b.foo(y);
' N
i | [o a1 1) {
} })

Tian Tan @ Nanjing University 51

Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.foo(x); b.foo(y); a.foo(x); b.foo(y);
v v R
Context 1: »L Context 2: »L
void foo(T p) { void foo(T p) {
} }

Tian Tan @ Nanjing University

Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
© Very useful technique
Significantly improve precision We start with this
More details in later lectures
a.foo(x); b.foo(y); a.foo(x); b.foo(y);
v ; v %
Context 1: Context 2: .
void foo(T p) { void foo(T p) { void foo(T p) {
}))

Tian Tan @ Nanjing University 53

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 54

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements

Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program

Tian Tan @ Nanjing University 55

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements

Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program

So far, all data-flow analyses
we have learnt are flow-sensitive

Tian Tan @ Nanjing University 56

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program

1 ¢ = new C();

2 c.f = "x";

3 s =c.f;

4 c.f = "y";

Tian Tan @ Nanjing University 57

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();

2 c.f = "x";

3 s =c.f;

4 c.f = "y";

Tian Tan @ Nanjing University 58

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01}) 4 C.'F — ||y||;
or.t — {"x"}

Tian Tan @ Nanjing University 59

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01}) 4 C.'F — ||y||;
or.t — {"x"}

c — {oi}
("x")
s —» 2

A

S
"
]

Tian Tan @ Nanjing University 60

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01}) 4 C.'F — ||y||;
or.t — {"x"}

c — {oi}
("x")

s - {"x"}

A

S
"
]

Tian Tan @ Nanjing University 61

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01}) 4 C.'F — ||y||;
or.t — {"x"}
c — {oi}
orf = {"x"} k : ?
Y
S _’ IIXII
X"} 6

Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01}) 4 c. _F — ||y|| ;
or.t — {"x"}
c — o} c — {oi}
or.tT — {"x"} wor.t — {"y"}
S _’ 11} lI S _} Il n
{"x"} {"x"} .

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

c * foi} [+~ 1 cC=new c(); c — {01}
2 c.f = "x"; o
3 s =c.f;
C — {01}) 4 C.'F — ||y||;
or.f = {"x"} _ B
c — o c — o}
or.t — {"x"} Mor.t = {"y"}
S _’ {ll ll} S _} {Il Il} 64

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * foy #—___ 1lc= —
2 c.f = "x"; - {Of}
3 s = c.f; B or.f — 2
C — {01}) A C.'F — Ilyll;
or.f = {"x"} _ B
c — o c — o}
or.tT — {"x"} wor.t — {"y"}
S _’ {ll ll} S _} {'l ||} 65

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * {oif =—__ 1lcs= —
—2 C ‘ -F = " X) ; — C [1] ?lOII% n
3 s = c.f; or.f = {"x% "y
C — {01}) A C.'F — Ilyll;
or.f = {"x"} _ B
c — o c — o}
or.t — {"x"} wor.t — {"y"}
S _’ {ll ||} S _} {'l ||} 66

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * {oif =—__ 1lcs= —
—2 C ¢ -F = 'IXl' ; — C mn ?'0]|% n
3 s = c.f; or.f = "5, Ty"

C — {01}) 4 C.'F — ")/"; B S N ?
or.f — {"x"}

c — o c — o}
or.t — {"x"} [Mor.t = {"y"}

S _’ {l' ||} S _} {'l ||} 67

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c > o} = 1lc-= c — {01}
2 c.f = "x";
3 s = C.'F; B or.f — {" o "}
c = oy | 4 c.f="y"; s — {"x","y"}
or.t — {"x"}
c — o} c — {oi}
or.t — {"x"} Mor.t = {"y"}
s — {"x"} s — {"x"} -

Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c —* {oi} = 1lcs= —
—2 C ¢ -F = "X" ; S— C mn ?IOII% mn
3 s =c.f; or.f — { y"
C — {01}) 4 C.'F — Ille; S || " m
or.t — {"x"} - B
false positive
c — o1} c — o1}
or.tT — {"x"} wor.t — {"y"}
S _’ {ll ll} S _} {" Il} 69

Flow Sensitivity

How to model control flow?

Flow-insensitive

Flow-sensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

c * foi} [+~ 1 cC=new c(); c — {01}
—2 C.-F - "X"; S— ll nom,,n
3 s = c.f; or.f — {"x","y"}
C - {01} < 4 C.'F — "y"; _ S — {II non n}
or.f = {"x"} '
Chosen in this course
c — o1} c — o}
or.f = {"X"} o = {"y")
S _’ {ll ll} S _} {Il Il} 70

Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 71

Analysis Scope
Which parts of program should be analyzed?

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

Tian Tan @ Nanjing University 72

Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
2y = X;

3 ..

4 z = new T();
5 z.bar();

Tian Tan @ Nanjing University 73

Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
X — {01} g y = X.;
y — o4 4 z = new T();
z > H{o4 5 z.bar();

Tian Tan @ Nanjing University 74

Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
X — {on) DY
y = oy 4 z = new T(); What points-to information
z — o4 5 z.bar(); doweneed?

Client: call graph construction
Site of interest: line 5

Tian Tan @ Nanjing University 75

Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
x — AHor} g y =%
y — Hor 4 ; = new T();
z — {o4} 5 z.bar(); z — Ho4

Client: call graph construction
Site of interest: line 5

Tian Tan @ Nanjing University 76

Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

Chosen in this course

1 x = new A();
x — AHor} g y =%
y — Hor 4 ; = new T();
z — Ho4 5 z.bar(); z — o4

Client: call graph construction
Site of interest: line 5

Tian Tan @ Nanjing University 77

Pointer Analysis in This Course

Factor Problem Choice

Heap How to model heap * Allocation-site
abstraction memory? * Storeless

Context How to model calling * Context-sensitive
sensitivity contexts? * Context-insensitive
Flow How to model control ¢ Flow-sensitive
sensitivity flow? * Flow-insensitive

Analysis scope Which parts of program < Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 78

Contents

A

Motivation

Introduction to Pointer Analysis
Key Factors of Pointer Analysis
Concerned Statements

79

What Do We Analyze?

* Modern languages typically have many kinds of statements
* if-else
* switch-case
* for/while/do-while
* break/continue

80

What Do We Analyze?

* Modern languages typically have many kinds of statements

+—jif-else
_ _ Do not directly affect pointers
forfwhilefae-while lgnored in pointer analysis
+_break/eontinue

* We only focus on pointer-affecting statements

81

Pointers In Java

e Local variable: x
e Static field: C.f
* Instance field: x.f

* Array element: array|[1]

82

Pointers In Java

* Local variable: x <
e Static field: C. f
e Instance field: x.f

* Array element: array|[1]

83

Pointers In Java

e Local variable: x
e Static field: C.f - Sometimes referred as global variable
* Instance field: x.f

* Array element: array|[1]

Tian Tan @ Nanjing University 84

Pointers In Java

e L ocal variable: x

* Instance field: x.f <=

* Array element: array|[1]

Modeled as an object
(pointed by x) with a field

85

Pointers In Java

e L ocal variable: x

lgnore indexes. Modeled as
an object (pointed by array)

with a single field, say arr,
which may point to any value

* Instance field: x.f

* Array element: array[i] == stored in array
array = new String[10]; array = new String[];
array[0] = "x"; array.arr = "x";
array[1] = "y"; array.arr = "y";

s = array[0]; S = array.arr;
Real code Perspective of pointer analysis

Tian Tan @ Nanjing University 86

Pointers In Java

e L ocal variable: x

* Instance field: x.f

87

Pointer-Affecting Statements

New X = new T()
Assign X =Y
Store X.f =y
Load y = x.f

Call r = x.k(a, ..)

88

Pointer-Affecting Statements

New
Assign
Store
Load

Call

X = new T() Complex memory-accesses will be
converted to three-address code by
y introducing temporary variables

X =
=)4 x.f.g.h = y;
y =|x.f l
r‘==l!lﬂka,)

Tian Tan @ Nanjing University 89

Pointer-Affecting Statements

New X = new T()
Assign X =Y

Store X.f =y

Load y = x.f

Call r = x.k(a, ..)

A

| |

 Static call C.foo()

e Special call super.foo()/x.<init>()/this.privateFoo()
* Virtual call x.foo()

Tian Tan @ Nanjing University

Pointer-Affecting Statements

New X = new T()
Assign X =Y
Store X.f =y
Load y = x.f
Call r = x.k(a, ..)
\

\

 Static call C.foo()

* Special call

super.foo()/x.<init>()/this.privateFoo()

°| Virtual call

x.foo()lfocus

Tian Tan @ Nanjing University

91

The X You Need To Understand in This Lecture

 What is pointer analysis?
« Understand the key factors of pointer analysis

 Understand what we analyze in pointer analysis

AR
X&g27!

Tian Tan @ Nanjing University

Static Program Analysis

Pointer Analysis
Foundations (l)

Nanjing University

Tian Tan

2020

Contents

s w N

Pointer Ana
How to Imp
Pointer Ana
Pointer Ana

ysis: Rules

ement Pointer Analysis
ysis: Algorithms

ysis with Method Calls

94

Contents

s w N

Pointer Analysis: Rules

How to Imp
Pointer Ana
Pointer Ana

ement PointerAnalysis
ysis: Algarithms
ysis with Method Calls

95

Pointer-Affecting Statements

New X = new T()
Assign X =Yy
__ First focus on these statements
Store X.F = y (suppose the program has just one method)
Load y = x.f
Call r = x.k (a) — Will come back to this in
- °) coe

pointer analysis with method calls

96

Domain and Notations

Variables: X,y €V

Fields: 1, g €EF

Objects: oi, oj €0

Instance fields: oif, 0j.g €O XF
Pointers: Pointer= V U (O x F)
Points-to relations: pt . Pointer — P(0)

* P(0) denotes the powerset of O
* pt(p) denotes the points-to set of p

97

Rules

Kind Statement Rule
New new T() 0; € pt(x)
Assign 0; € pt(y)
0; € pt(x)
Store X.f =y 0; € pt(x), o; € pt(y)
oj € pt(0;.f)
Load 0; € pt(x), o; € pt(o;.f)

0j € pt(y)

Rules

Kind Statement Rule
New i: x = new T() 0; € pt(x) < unconditional
- & premises

Assign X =Yy 0j € pt(y) P

0; € pt(x) <& conclusion
Store X.f =y 0; € pt(x), o; € pt(y)

oj € pt(0;.f)

Load y = x.f 0; € pt(x), o; € pt(o;. f)

0j € pt(y)

99

Rule: New

0; € pt(x)

— Conclusion

— 2

1: X = new T()

100

Rule: Assign

---=- Premises

— Conclusion

Tian Tan @ Nanjing University

101

Rule: Store

0; € pt(x), oj € pt(y)
0j € pt(0;.f)

----> Premises f
Oi O;
— Conclusion X 7
\ /

\ /
/

x.f =y

Tian Tan @ Nanjing University 102

Rule: Load

0; € pt(x), o; € pt(o;.f)
0; € pt(y)

----> Premises f
0; ¢-=-=-=-- O;
— Conclusion '\ ,

Tian Tan @ Nanjing University 103

Rules

---=- Premises

— Conclusion

Illustration
0;
New
0; € pt(x) i: x = new T()
0;
. »
Assign 0; € pt(y) :
0; € pt(x) X =Y
f
.
Store 0; € pt(x), oj € pt(y) \\ /
o) € pt(or.1) oy
f
0; € pt(x), oj € pt(o;.f) 7
Load /
0j € pt(y) y = o f

104

	幻灯片编号 1
	Static Program Analysis
	Contents
	Contents
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Problem of CHA
	Via Pointer Analysis
	Via Pointer Analysis
	Via Pointer Analysis
	Contents
	Pointer Analysis
	Pointer Analysis
	Pointer Analysis
	Pointer Analysis
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Pointer Analysis and Alias Analysis
	Pointer Analysis and Alias Analysis
	Pointer Analysis and Alias Analysis
	Applications of Pointer Analysis
	Applications of Pointer Analysis
	Contents
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Key Factors in Pointer Analysis
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Heap Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Allocation-Site Abstraction
	Key Factors in Pointer Analysis
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity
	Key Factors in Pointer Analysis
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Flow Sensitivity
	Key Factors in Pointer Analysis
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Analysis Scope
	Pointer Analysis in This Course
	Contents
	What Do We Analyze?
	What Do We Analyze?
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointers in Java
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	Pointer-Affecting Statements
	The X You Need To Understand in This Lecture
	Static Program Analysis
	Contents
	Contents
	Pointer-Affecting Statements
	Domain and Notations
	Rules
	Rules
	Rule: New
	Rule: Assign
	Rule: Store
	Rule: Load
	Rules

