T A g R

BEI Yo

N 7 0 B X g

o S B




Static Program Analysis

Pointer Analysis

Nanjing University

Tian Tan

2021



Contents

Motivation
Introduction to Pointer Analysis
Key Factors of Pointer Analysis

> w N e

Concerned Statements



Contents

> w N e

Motivation

Introduction to Pointer Analysis
Key Factors of Pointer Analysis
Concerned Statements



Problem of CHA

void foo() {

Number n = new One();
=) int x = n.get();
}

interface Number {
int get();

}

class Zero implements Number {
public int get() { return 0; }

}

class One implements Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

Tian Tan @ Nanjing University
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PrOblem Of CHA CHA: based on

class hierarchy
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Problem of CHA

void foo() {
n

Number| n = new One();
== int x = n.get()g.
} ‘\\\\:\ :s\\\
VNN
“‘ NN
. \ \
interface Number { v 1} Y
int get(); A
} ',' II' 'l'
l

class Zero 1mp1emgﬁts NuMber {
public int get() { #eturn 9; }

} I lll

class One 1mplemeptslNumber {
public int get()/{ return 1; }

}

class Two implemegts Number {
public int get() { return 2; }

}

CHA: based-en only considers
class hierarchy
* 3 call targets 3
2 false positives/{,}

Constant propagation
e x=NAC

imprecise
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Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { X

int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

CHA: based-en only considers
class hierarchy
e 3 call targets

Constant propagation
* x=NAC

imprecise

Pointer analysis: based on
points-to relation
e 1 call target
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Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { X
int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
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Via Pointer Analysis

void foo() {

Number n = new One();
m=) int x =|nlget()q
}

n points to new One \

\
\

interface Number { j
int get(); ;

}

class Zero implements Alumber {
public int get()A return 0; }

}

class One implemeﬁfs Number {
public int get() { return 1; }

}

class Two implements Number {
public int get() { return 2; }

}

CHA: based-en only considers

class hierarchy

e 3 call targets / A

» 2 false positives /1\ ; %\J\
RN

Constant propagation

e x=NAC

imprecise

Pointer analysis: based on
points-to relation
e 1 call target

e 0 false positive

Constant propagation

e x=1 precise
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Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to
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can point to, i.e., we ask “a pointer may point to which objects?”

17



Pointer Analysis

* A fundamental static analysis
 Computes which memory locations a pointer can point to

* For object-oriented programs (focus on Java)
 Computes which objects a pointer (variable or field) can point to

* Regarded as a may-analysis

 Computes an over-approximation of the set of objects that a pointer
can point to, i.e., we ask “a pointer may point to which objects?”

A research area with 40+ years of history
» William E. Weihl, “Interprocedural Data Flow Analysis in the Presence
of Pointers, Procedure Variables, and Label Variables”. POPL 1980.

Still an active area today
> OOPSLA’18, FSE’18, TOPLAS’19, OOPSLA’19, TOPLAS’20, OOPSLA’21 ...

Tian Tan @ Nanjing University 18



Example

“Which objects a pointer can point to?”

Program

void foo() {
A a = new A();
B x = new B();
a.setB(x);
By = a.getB();

}

class A {
B b;
void setB(B b) { this.b = b; }
B getB() { return this.b; }

}

Tian Tan @ Nanjing University

Points-to relations
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Example

“Which objects a pointer can point to?”

Program

void foo() {
a = new A();
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y = a.getB();

class A {
B b;

void setB(B b) { this.b = b; }
B getB() { return this.b; }

Tian Tan @ Nanjing University

Points-to relations

Variable Object

a new A

X new B
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Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object
A a = new A(); 3 new A
B x = new B();

) 5,setB(x);- 0 O \ X new B

By =a.getB(); | this ?J

) / b ?

class A { f

Bb; ¥
mmmms) vOid setB(B b) { this.b = b; }
B getB() { return this.b; }

}
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Example

“Which objects a pointer can point to?”

Program Points-to relations
void foo() { Variable Object
A a = new A(); 3 new A
B x = new B();
) 5,.setB(x);-" O \ X new B
By =a.getB(); | this new A
} ,:" b new B
class A { f
B by, ¥

mmmms) vOid setB(B b) { this.b = b; }
B getB() { return this.b; }
}
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Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A
B x = new B();

—) a.setB(X); """""""""" \ X new B

By = a.getB(); X this new A
} ; b new B
class A { f -
B b; #
void setB(B b) { this.b = b; } ¢—— Field Object
B getB() { return this.b; } new A.b | new B
} | — |
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Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A

B x = new B();

a.setB(x); X new B

) By = a.getB();"\ this new A

} \". b new B
class A { ,': y ?)

B b; .-’

v01d-setB(B b) { this.b = b; } Field Object

B getB() { return this.b; } ¢ new A.b | new B
} | —
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Example

“Which objects a pointer can point to?”

Program Points-to relations

void foo() { Variable Object

A a = new A(); 3 new A
B x = new B();
a.setB(x); X new B
) By = a.getB();"\ this new A
} \ b new B
class A { ,': y new B
B b; ---mmmmmmmmeee’
v01d-setB(B b) { this.b = b; } Field Object
\ B getB() { return this.b; } ¢ new A.b | new B
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Example

“Which objects a pointer can point to?”

Pointer : :
Program m ointe m Points-to relations
Analysis

void foo() { Variable Object

A a = new A(); 3 new A

B x = new B();

a.setB(x); X new B

By = a.getB(); this new A
} b new B
class A { y new B

B b;

void setB(B b) { this.b = b; } Field Object
B getB() { return this.b; } new A.b | new B
} > | |
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Pointer Analysis and Alias Analysis

Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?
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Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?

If two pointers, say p and g, refer to the same object, then p
and g are aliases

p = new C();

q=p; p and g are aliases

X = new X(); x and y are not aliases
y = new Y();
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Pointer Analysis and Alias Analysis

Two closely related but different concepts
* Pointer analysis: which objects a pointer can point to?
 Alias analysis: can two pointers point to the same object?

If two pointers, say p and g, refer to the same object, then p
and g are aliases

p = new C();

q=p; p and g are aliases

X = new X(); x and y are not aliases
y = new Y();

Alias information can be derived from points-to relations

29



Applications of Pointer Analysis

e Fundamental information
o Call graph, aliases, ...

* Compiler optimization
o Virtual call inlining, ...

* Bug detection
o Null pointer detection, ...

e Security analysis

o Information flow analysis, “Pointer analysis is one of the most
fundamental static program analyses,

* And many more ... on which virtually all others are built.”*
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e Fundamental information
o Call graph, aliases, ...

* Compiler optimization
o Virtual call inlining, ...

* Bug detection
o Null pointer detection, ...

@@@@ ©SSS DAGSTUHL - LZI GMBH
rrrmr |icensed under Creative Commons License CC BY-NC-ND

e Security analysis

o Information flow analysis,  “Pointer analysis is one of the most
fundamental static program analyses,

* And many more ... on which virtually all others are built.”*

*Pointer Analysis - Report from Dagstuhl Seminar 13162. 2013.
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Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system
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Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed?  Demand-driven

Tian Tan @ Nanjing University 34
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Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless
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sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
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Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

Tian Tan @ Nanjing University
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Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

* To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

Tian Tan @ Nanjing University 40



Heap Abstraction

How to model heap memory?

* In dynamic execution, the number of heap objects can be unbounded
due to loops and recursion

for (..) {
A a = new A();

}

* To ensure termination, heap abstraction models dynamically allocated,
unbounded concrete objects as finite abstract objects for static analysis

Dynamic execution Static analysis

"IN JK XK B 3K ) abstracted ® o
oo o0 o). 1@ o [
Unbounded concrete objects Bounded abstract objects
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Heap Abstraction

=
Unbounded g
heap memory é‘-
'_Ez
Store based Hybrid Storeless =
model model model =
Generic

instrumentation b
predicates 2
k- Higher-order k- igher-order §
limiting logics limiting logics 3
_ Generic £
Allocation | instrumentation Ceneric g
sites Y predicates Patterns instrumentation @

Variables predicates

Figure 2. Heap memory can be modeled as storeless, store based, or hybrid. These models are
summarized using allocation sites, k-limiting, patterns, variables, other generic instrumentation
predicates, or higher-order logics.

Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016
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Heap Abstraction

o
<
Unbounded g
heap memory 2
_
-
w
Store based \ =
model : =
Generic
Imstrumentation b
predicates B
. . =
k- Higher-order k- igher-order .2
limiting logics limiting logics S
: Generic £
AHO_?:&UOH instrumentation Ceneric %
sites Y predicates Patterns instrumentation @

Variables predicates

Figure 2. Heap memory can be modeled as storeless, store based, or hybrid. These models are
summarized using allocation sites, k-limiting, patterns, variables, other generic instrumentation
predicates, or higher-order logics.

Vini Kanvar, Uday P. Khedker, “Heap Abstractions for Static Analysis”. ACM CSUR 2016
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Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects
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Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (1 =0; 1< 3; ++1) {
a = new A();

.....................................................
. 0

B~ wN

} 0,, iterationi = ©
. 0y, iterationi = 1
0,, iterationi = 2

0
......................................................

Dynamic execution
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Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (i = 0; 1 < 3; ++1) {
a = new A();

.....................................................
. 0

B~ wN

} . 0y, iterationi = @ abstracted l
i 0,,iterationi = : > 0,
0,, iterationi = 2

=

0
......................................................

Allocation-site
Dynamic execution abstraction
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Allocation-Site Abstraction

The most commonly-used heap abstraction
* Model concrete objects by their allocation sites

* One abstract object per allocation site to represent
all its allocated concrete objects

1 for (i = 0; 1 < 3; ++1) {
a = new A();

.....................................................
. 0

B~ wN

} . 0y, iterationi = @ abstracted l
i 0,,iterationi = : > 0,
0,, iterationi = 2

=

The number of alloCation SITES  “rrrrerreeeeeessssssssssssmssssseeeeeeens
in a program is bounded,
thus the abstract objects must
be finite.

Allocation-site
Dynamic execution abstraction

Tian Tan @ Nanjing University a7



Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed?  Demand-driven

Tian Tan @ Nanjing University 48



Context Sensitivity

How to model calling contexts?

Context-sensitive

Distinguish different calling contexts of a
method

Context-insensitive

Merge all calling contexts of a method

Analyze each method multiple times,
once for each context

Analyze each method once

Tian Tan @ Nanjing University
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Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.foo(x); b.foo(y);
v v R
Context 1: »L Context 2: »L
void foo(T p) { void foo(T p) {
} }
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Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.fool(x)s b.focl)(y); a.foo(x); b.foo(y);
' N
i | [ o a1 1) {
} } )
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Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
once for each context

a.foo(x); b.foo(y); a.foo(x); b.foo(y);
v v R
Context 1: »L Context 2: »L
void foo(T p) { void foo(T p) {
} }
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Context Sensitivity

How to model calling contexts?

Context-sensitive Context-insensitive

Distinguish different calling contexts of a | Merge all calling contexts of a method
method

Analyze each method multiple times, Analyze each method once
© Very useful technique
Significantly improve precision We start with this
More details in later lectures
a.foo(x); b.foo(y); a.foo(x); b.foo(y);
v ; v %
Context 1: Context 2: .
void foo(T p) { void foo(T p) { void foo(T p) {
} ) )
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Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed?  Demand-driven
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements

Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements

Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program

So far, all data-flow analyses
we have learnt are flow-sensitive
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program

1 ¢ = new C();

2 c.f = "x";

3 s =c.f;

4 c.f = "y";

Tian Tan @ Nanjing University 57



Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01} ) 4 C.'F — ||y||;
or.t — {"x"}
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01} ) 4 C.'F — ||y||;
or.t — {"x"}

c — {oi}
("x")
s —» 2

A

S
"
]
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01} ) 4 C.'F — ||y||;
or.t — {"x"}

c — {oi}
("x")

s - {"x"}

A

S
"
]
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01} ) 4 C.'F — ||y||;
or.t — {"x"}
c — {oi}
orf = {"x"} k : ?
Y
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Flow Sensitivity

How to model control flow?

Flow-sensitive Flow-insensitive
Respect the execution order of the lgnore the control-flow order, treat the
statements program as a set of unordered statements
Maintain a map of points-to relations at | Maintain one map of points-to relations for
each program location the whole program
c —» {oi} (—____ 1 c=new C();
2 c.f = "x";
3 s =c.f;
_’
C {01} ) 4 c. _F — ||y|| ;
or.t — {"x"}
c — o} c —  {oi}
or.tT — {"x"} wor.t — {"y"}
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Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

c * foi} [+~ 1 cC=new c(); c — {01}
2 c.f = "x"; o
3 s =c.f;
C — {01} ) 4 C.'F — ||y||;
or.f = {"x"} _ B
c — o c — o}
or.t — {"x"} Mor.t = {"y"}
S _’ {ll ll} S _} {Il Il} 64




Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * foy #—___  1lc= —
2 c.f = "x"; - {Of}
3 s = c.f; B or.f — 2
C — {01} ) A C.'F — Ilyll;
or.f = {"x"} _ B
c — o c — o}
or.tT — {"x"} wor.t — {"y"}
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Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * {oif =—__ 1lcs= —
—2 C ‘ -F = " X ) ; — C [ 1] ?lOII% n
3 s = c.f; or.f = {"x% "y
C — {01} ) A C.'F — Ilyll;
or.f = {"x"} _ B
c — o c — o}
or.t — {"x"} wor.t — {"y"}
S _’ {ll ||} S _} {'l ||} 66




Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c * {oif =—__ 1lcs= —
—2 C ¢ -F = 'IXl' ; — C mn ?'0]|% n
3 s = c.f; or.f = "5, Ty"

C — {01} ) 4 C.'F — ")/"; B S N ?
or.f — {"x"}

c — o c — o}
or.t — {"x"} [ Mor.t = {"y"}
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Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c > o} = 1lc-= c  — {01}
2 c.f = "x";
3 s = C.'F; B or.f — {" o "}
c = oy | 4 c.f="y"; s — {"x","y"}
or.t — {"x"}
c — o} c —  {oi}
or.t — {"x"} Mor.t = {"y"}
s — {"x"} s — {"x"} -




Flow Sensitivity

How to model control flow?

Flow-sensitive

Flow-insensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

new C();s

c —* {oi} = 1lcs= —
—2 C ¢ -F = "X" ; S— C mn ?IOII% mn
3 s =c.f; or.f — { y"
C — {01} ) 4 C.'F — Ille; S || " m
or.t — {"x"} - B
false positive
c — o1} c — o1}
or.tT — {"x"} wor.t — {"y"}
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Flow Sensitivity

How to model control flow?

Flow-insensitive

Flow-sensitive

Respect the execution order of the
statements

lgnore the control-flow order, treat the
program as a set of unordered statements

Maintain a map of points-to relations at

each program location

Maintain one map of points-to relations for
the whole program

c * foi} [+~ 1 cC=new c(); c — {01}
—2 C.-F - "X"; S— ll nom,,n
3 s = c.f; or.f — {"x","y"}
C - {01} < 4 C.'F — "y"; _ S — {II non n}
or.f = {"x"} '
Chosen in this course
c — o1} c — o}
or.f = {"X"} o = {"y")
S _’ {ll ll} S _} {Il Il} 70




Key Factors in Pointer Analysis

* Pointer analysis is a complex system
* Multiple factors affect the precision and efficiency of the system

Factor Problem Choice

Heap How to model heap * Allocation-site

abstraction memory? e Storeless

Context How to model calling * Context-sensitive

sensitivity contexts? * Context-insensitive

Flow sensitivity How to model control * Flow-sensitive
flow? * Flow-insensitive

Analysis scope Which parts of program ¢ Whole-program
should be analyzed?  Demand-driven

Tian Tan @ Nanjing University 71



Analysis Scope
Which parts of program should be analyzed?

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients
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Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
2y = X;

3 ..

4 z = new T();
5 z.bar();
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Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
X — {01} g y = X.;
y — o4 4 z = new T();
z > H{o4 5 z.bar();
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Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
X — {on) DY
y = oy 4 z = new T(); What points-to information
z — o4 5 z.bar(); doweneed?

Client: call graph construction
Site of interest: line 5
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Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

1 x = new A();
x —  AHor} g y =%
y — Hor 4 ; = new T();
z —  {o4} 5 z.bar(); z —  Ho4

Client: call graph construction
Site of interest: line 5
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Analysis Scope
Which parts of program should be analyzed?

Whole-program Demand-driven

Compute points-to information for all Only compute points-to information for
pointers in the program the pointers that may affect specific sites
of interest (on demand)

Provide information for all possible clients | Provide information for specific clients

Chosen in this course

1 x = new A();
x —  AHor} g y =%
y — Hor 4 ; = new T();
z —  Ho4 5 z.bar(); z — o4

Client: call graph construction
Site of interest: line 5
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Pointer Analysis in This Course

Factor Problem Choice

Heap How to model heap * Allocation-site
abstraction memory? * Storeless

Context How to model calling * Context-sensitive
sensitivity contexts? * Context-insensitive
Flow How to model control ¢ Flow-sensitive
sensitivity flow? * Flow-insensitive

Analysis scope Which parts of program < Whole-program
should be analyzed? Demand-driven

Tian Tan @ Nanjing University 78




Contents

A

Motivation

Introduction to Pointer Analysis
Key Factors of Pointer Analysis
Concerned Statements
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What Do We Analyze?

* Modern languages typically have many kinds of statements
* if-else
* switch-case
* for/while/do-while
* break/continue

80



What Do We Analyze?

* Modern languages typically have many kinds of statements

+—jif-else
_ _ Do not directly affect pointers
forfwhilefae-while lgnored in pointer analysis
+_break/eontinue

* We only focus on pointer-affecting statements

81



Pointers In Java

e Local variable: x
e Static field: C.f
* Instance field: x.f

* Array element: array|[1]
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Pointers In Java

* Local variable: x <
e Static field: C. f
e Instance field: x.f

* Array element: array|[1]
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Pointers In Java

e Local variable: x
e Static field: C.f - Sometimes referred as global variable
* Instance field: x.f

* Array element: array|[1]

Tian Tan @ Nanjing University 84



Pointers In Java

e L ocal variable: x

* Instance field: x.f <=

* Array element: array|[1]

Modeled as an object
(pointed by x) with a field

85



Pointers In Java

e L ocal variable: x

lgnore indexes. Modeled as
an object (pointed by array)

with a single field, say arr,
which may point to any value

* Instance field: x.f

* Array element: array[i] == stored in array
array = new String[10]; array = new String[];
array[0] = "x"; array.arr = "x";
array[1] = "y"; array.arr = "y";

s = array[0]; S = array.arr;
Real code Perspective of pointer analysis
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Pointers In Java

e L ocal variable: x

* Instance field: x.f
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Pointer-Affecting Statements

New X = new T()
Assign X =Y
Store X.f =y
Load y = x.f

Call r = x.k(a, ..)
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Pointer-Affecting Statements

New
Assign
Store
Load

Call

X = new T( ) Complex memory-accesses will be
converted to three-address code by
y introducing temporary variables

X =
= )4 x.f.g.h = y;
y =|x.f l
r‘==l!lﬂka, )
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Pointer-Affecting Statements

New X = new T()
Assign X =Y

Store X.f =y

Load y = x.f

Call r = x.k(a, ..)

A

| |

 Static call C.foo()

e Special call super.foo()/x.<init>()/this.privateFoo()
* Virtual call x.foo()

Tian Tan @ Nanjing University



Pointer-Affecting Statements

New X = new T()
Assign X =Y
Store X.f =y
Load y = x.f
Call r = x.k(a, ..)
\

\

 Static call C.foo()

* Special call

super.foo()/x.<init>()/this.privateFoo()

°| Virtual call

x.foo()lfocus

Tian Tan @ Nanjing University
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The X You Need To Understand in This Lecture

 What is pointer analysis?
« Understand the key factors of pointer analysis

 Understand what we analyze in pointer analysis

AR
X&g27!

Tian Tan @ Nanjing University



Static Program Analysis

Pointer Analysis
Foundations (l)

Nanjing University

Tian Tan
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Pointer Analysis: Rules

How to Imp
Pointer Ana
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Pointer-Affecting Statements

New X = new T()
Assign X =Yy
__ First focus on these statements
Store X.F = y (suppose the program has just one method)
Load y = x.f
Call r = x.k ( a ) — Will come back to this in
- ° ) coe

pointer analysis with method calls

96



Domain and Notations

Variables: X,y €V

Fields: 1, g €EF

Objects: oi, oj €0

Instance fields: oif, 0j.g €O XF
Pointers: Pointer= V U (O x F)
Points-to relations: pt . Pointer — P(0)

* P(0) denotes the powerset of O
* pt(p) denotes the points-to set of p
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Rules

Kind Statement Rule
New new T() 0; € pt(x)
Assign 0; € pt(y)
0; € pt(x)
Store X.f =y 0; € pt(x), o; € pt(y)
oj € pt(0;.f)
Load 0; € pt(x), o; € pt(o;.f)

0j € pt(y)




Rules

Kind Statement Rule
New i: x = new T() 0; € pt(x) < unconditional
- & premises

Assign X =Yy 0j € pt(y) P

0; € pt(x) <& conclusion
Store X.f =y 0; € pt(x), o; € pt(y)

oj € pt(0;.f)

Load y = x.f 0; € pt(x), o; € pt(o;. f)

0j € pt(y)
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Rule: New

0; € pt(x)

— Conclusion

— 2

1: X = new T()
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Rule: Assign

---=- Premises

— Conclusion

Tian Tan @ Nanjing University
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Rule: Store

0; € pt(x), oj € pt(y)
0j € pt(0;.f)

----> Premises f
Oi O;
— Conclusion X 7
\ /

\ /
/

x.f =y

Tian Tan @ Nanjing University 102



Rule: Load

0; € pt(x), o; € pt(o;.f)
0; € pt(y)

----> Premises f
0; ¢-=-=-=-- O;
— Conclusion '\ ,

Tian Tan @ Nanjing University 103



Rules

---=- Premises

— Conclusion

Illustration
0;
New
0; € pt(x) i: x = new T()
0;
. »
Assign 0; € pt(y) :
0; € pt(x) X =Y
f
.
Store 0; € pt(x), oj € pt(y) \\ /
o) € pt(or.1) oy
f
0; € pt(x), oj € pt(o;.f) 7
Load /
0j € pt(y) y = o f
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