
南
京
大
学

李
樾

谭
添

计
算
机
科
学
与
技
术
系

程
序
设
计
语
言

静
态
分
析
研
究
组

与

软
件
分
析



Static Program Analysis

Nanjing University

Yue Li

Fall 2021

Introduction



Sydney

Aarhus

Nanjing

5 yrs

2 yrs

2019.09

Lecturers:
Yue Li & Tian Tan

Yue Li @ Nanjing University



1. PL and Static Analysis

2. Why We Learn Static Analysis?

3. What is Static Analysis?

4. Static Analysis Features and Examples

5. Teaching Plan

6. Evaluation Criteria

Contents

Yue Li @ Nanjing University



Static Program Analysis (Static Analysis)

Programming Languages

Yue Li @ Nanjing University



Static Program Analysis (Static Analysis)

• Language design

• Type system

• Semantics and logics

Programming Languages

Theory Environment Application

• Compilers

• Runtime system

• Program analysis

• Program verification

• Program synthesis
• … … • … …

• … …

Yue Li @ Nanjing University



Static Program Analysis (Static Analysis)

• Language design

• Type system

• Semantics and logics

Programming Languages

Theory Environment Application

• Compilers

• Runtime system

• Program analysis

• Program verification

• Program synthesis

Background: In the last decade, the language cores had few changes,
but the programs became significantly larger and more complicated.

Challenge: How to ensure the reliability, security and other promises of
large-scale and complex programs?

• … … • … …
• … …

Yue Li @ Nanjing University



Why We Need Static Analysis?

Yue Li @ Nanjing University



Why We Need Static Analysis?

• Program Reliability
Null pointer dereference, memory leak, etc. Examples

Yue Li @ Nanjing University



Why We Need Static Analysis?

• Program Reliability
Null pointer dereference, memory leak, etc.

• Program Security
Private information leak, injection attack, etc.

Examples

Examples

Yue Li @ Nanjing University



Why We Need Static Analysis?

• Program Reliability
Null pointer dereference, memory leak, etc.

• Program Security
Private information leak, injection attack, etc.

• Compiler Optimization
Dead code elimination, code motion, etc.

Examples

Examples

Examples

Yue Li @ Nanjing University



Why We Need Static Analysis?

• Program Reliability
Null pointer dereference, memory leak, etc.

• Program Security
Private information leak, injection attack, etc.

• Compiler Optimization
Dead code elimination, code motion, etc.

• Program Understanding
IDE call hierarchy, type indication, etc.

Examples

Examples

Examples

Examples

Yue Li @ Nanjing University



Market of Static Analysis

Academia

Software Engineering

Programming Languages

Systems

Security

Industries

Any directions that
rely on programs

… …

Yue Li @ Nanjing University



Academia

Software Engineering

Programming Languages

Systems

Security

Industries

Any directions that
rely on programs

… …

Static analysis people are

urgently needed !

Market of Static Analysis

Yue Li @ Nanjing University



Yue Li @ Nanjing University



前方中文预警

Yue Li @ Nanjing University



深入学习静态程序分析——附加值

• 更深入地理解编程语言的语法、语义（不枯燥）
• 自然而然地写出更可靠、更安全、更高效的程序

Yue Li @ Nanjing University



Static Analysis

Static analysis analyzes a program P to reason about its behaviors and
determines whether it satisfies some properties before running P.

• Does P contain any private information leaks?

• Does P dereference any null pointers?

• Are all the cast operations in P safe?

• Can v1 and v2 in P point to the same memory location?

• Will certain assert statements in P fail?

• Is this piece of code in P dead (so that it could be eliminated)?

• …

Yue Li @ Nanjing University



Static Analysis

Static analysis analyzes a program P to reason about its behaviors and
determines whether it satisfies some properties before running P.

• Does P contain any private information leaks?

• Does P dereference any null pointers?

• Are all the cast operations in P safe?

• Can v1 and v2 in P point to the same memory location?

• Will certain assert statements in P fail?

• Is this piece of code in P dead (so that it could be eliminated)?

• …

Unfortunately, by Rice’s Theorem, there is no such approach to determine whether
P satisfies such non-trivial properties, i.e., giving exact answer: Yes or No

Yue Li @ Nanjing University



Rice’s Theorem

“Any non-trivial property of the behavior of 
programs in a r.e. language is undecidable.”

r.e. (recursively enumerable) = recognizable by a Turing-machine

Yue Li @ Nanjing University



Rice’s Theorem

“Any non-trivial property of the behavior of 
programs in a r.e. language is undecidable.”

A property is trivial if either it is not satisfied by any r.e. language, 
or if it is satisfied by all r.e. languages; otherwise it is non-trivial.

r.e. (recursively enumerable) = recognizable by a Turing-machine

non-trivial properties
~= interesting properties
~= the properties related with run-time behaviors of programs

Yue Li @ Nanjing University



Rice’s Theorem

“Any non-trivial property of the behavior of 
programs in a r.e. language is undecidable.”

A property is trivial if either it is not satisfied by any r.e. language, 
or if it is satisfied by all r.e. languages; otherwise it is non-trivial.

r.e. (recursively enumerable) = recognizable by a Turing-machine

non-trivial properties
~= interesting properties
~= the properties related with run-time behaviors of programs

• Does P contain any private information leaks?

• Does P dereference any null pointers?

• Are all the cast operations in P safe?

• Can v1 and v2 in P point to the same memory location?

• Will certain assert statements in P fail?

• Is this piece of code in P dead (so that it could be eliminated)?

Non-trivial Properties

Yue Li @ Nanjing University



Perfect static analysis

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No

Yue Li @ Nanjing University



Perfect static analysis
Rice

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No

Yue Li @ Nanjing University



Perfect static analysis
Rice• Sound

• Complete
AND

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No

Yue Li @ Nanjing University



Perfect static analysis
Rice• Sound

• Complete
AND

Sound

Complete

Truth

Sound & Complete

Yue Li @ Nanjing University

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No



Perfect static analysis
Rice• Sound

• Complete
AND

Sound

Complete

Truth

Sound & Complete

All possible true
program behaviors

Yue Li @ Nanjing University

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No



Perfect static analysis
Rice• Sound

• Complete
AND

Sound

Complete

Truth

Sound & Complete

All possible true
program behaviors

Overapproximate

Underapproximate

Yue Li @ Nanjing University

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No



Perfect static analysis
Rice• Sound

• Complete
AND

Sound

Complete

Truth

Sound & Complete

All possible true
program behaviors

Overapproximate

Underapproximate

Yue Li @ Nanjing University

Can determine whether P satisfies such non-trivial
properties, i.e., giving exact answer: Yes or No

NO perfect static analysis!

The end of story ???



Perfect static analysis
Rice

Useful static analysis
• Compromise soundness (false negatives)
• Compromise completeness (false positives)

• Sound
• Complete

AND

OR

Yue Li @ Nanjing University



Sound

Complete

Truth

Useful static analysis
• Compromise soundness (false negatives)
• Compromise completeness (false positives)

OR

False
Positives

False
Negatives

Yue Li @ Nanjing University



Sound

Complete

Truth

Useful static analysis
• Compromise soundness (false negatives)
• Compromise completeness (false positives)

OR

False
Positives

False
Negatives

Mostly compromising completeness:
Sound but not fully-precise static analysis

Yue Li @ Nanjing University



Necessity of Soundness

• Soundness is critical to a collection of important (static-analysis)
applications such as compiler optimization and program verification.

Yue Li @ Nanjing University



Necessity of Soundness

• Soundness is critical to a collection of important (static-analysis)
applications such as compiler optimization and program verification.

B b = new B();

a.fld = b;

B b’ = (B) a.fld;

C c = new C();

a.fld = c;

Unsound

“Safe Cast”:
wrong conclusion

Yue Li @ Nanjing University

B C

A



Necessity of Soundness

• Soundness is critical to a collection of important (static-analysis)
applications such as compiler optimization and program verification.

Sound

B b = new B();

a.fld = b;

Not Safe

B b’ = (B) a.fld;

C c = new C();

a.fld = c;

“Not Safe Cast”:
correct conclusion

Unsound

“Safe Cast”:
wrong conclusion

Yue Li @ Nanjing University

B C

A



Necessity of Soundness

• Soundness is critical to a collection of important (static-analysis)
applications such as compiler optimization and program verification.

Sound

B b = new B();

a.fld = b;

Not Safe

B b’ = (B) a.fld;

• Soundness is also preferable to other (static-analysis) applications
for which soundness is not demanded, e.g., bug detection, as better
soundness implies more bugs could be found.

C c = new C();

a.fld = c;

“Not Safe Cast”:
correct conclusion

Unsound

“Safe Cast”:
wrong conclusion

Yue Li @ Nanjing University

B C

A



Static Analysis — Bird’s Eye View

if(input)
x = 1;

else
x = 0;

à x = ?

Yue Li @ Nanjing University



Static Analysis — Bird’s Eye View

if(input)
x = 1;

else
x = 0;

à x = ?

Two analysis results:

1. when input is true, x = 1
when input is false, x = 0

2. x = 1 or x = 0

Yue Li @ Nanjing University



Static Analysis — Bird’s Eye View

if(input)
x = 1;

else
x = 0;

à x = ?

Sound, precise, expensive

Two analysis results:

1. when input is true, x = 1
when input is false, x = 0

Sound, imprecise, cheap

2. x = 1 or x = 0

Yue Li @ Nanjing University



Static Analysis — Bird’s Eye View

if(input)
x = 1;

else
x = 0;

à x = ?

Sound, precise, expensive

Two analysis results:

1. when input is true, x = 1
when input is false, x = 0

Sound, imprecise, cheap

2. x = 1 or x = 0

Static Analysis: ensure (or get close to) soundness, while making
good trade-offs between analysis precision and analysis speed.

Yue Li @ Nanjing University



Two Words to Conclude Static Analysis

Abstraction + Over-approximation

Yue Li @ Nanjing University

For most static analyses(may analysis)



Static Analysis — An Example

Determine the sign (+, -, or 0) of all the variables of a given program.

To check dividedby zero error

• Abstraction

• Over-approximation

To check negative

array indices

Yue Li @ Nanjing University

• Transfer functions
• Control flows



Abstraction

Concrete Domain
(ints)

Abstract Domain
(signs)

v = 1

v = -1

v = 0

v = e ? 1 : -1

v = w / 0

v = 1000 +

O

Yue Li @ Nanjing University

Determine the sign (+, -, or 0) of all the variables of a given program.



Abstraction

Concrete Domain
(ints)

Abstract Domain
(signs)

v = 1

v = -1

v = 0

v = e ? 1 : -1

v = w / 0

v = 1000 +

O

unknown

Yue Li @ Nanjing University

Determine the sign (+, -, or 0) of all the variables of a given program.



Abstraction

Concrete Domain
(ints)

Abstract Domain
(signs)

v = 1

v = -1

v = 0

v = e ? 1 : -1

v = w / 0

v = 1000 +

O

unknown

undefined

Yue Li @ Nanjing University

Determine the sign (+, -, or 0) of all the variables of a given program.



Abstraction

Concrete Domain
(ints)

Abstract Domain
(signs)

v = 1

v = -1

v = 0

v = e ? 1 : -1

v = w / 0

v = 1000 +

O

unknown

undefined

Yue Li @ Nanjing University

Determine the sign (+, -, or 0) of all the variables of a given program.



Over-approximation: Transfer Functions

• Transfer functions are defined according to “analysis problem”
and the “semantics” of different program statements.

• In static analysis, transfer functions define how to evaluate
different program statements on abstract values.

Yue Li @ Nanjing University



Over-approximation: Transfer Functions

• Transfer functions are defined according to “analysis problem”
and the “semantics” of different program statements.

• In static analysis, transfer functions define how to evaluate
different program statements on abstract values.

+

O

+

+ + =

+ =

+ =

+ =

O

+

+

+ =

=

=

=

O

/

/

/

/

Yue Li @ Nanjing University



Over-approximation: Transfer Functions

• Transfer functions are defined according to “analysis problem”
and the “semantics” of different program statements.

• In static analysis, transfer functions define how to evaluate
different program statements on abstract values.

+

+

+ = +

=

=

=

O

/

/

/

/

+

Yue Li @ Nanjing University

+

O

+

+ + = +

+ =

+ =

+ =

O O



Over-approximation: Transfer Functions

• Transfer functions are defined according to “analysis problem”
and the “semantics” of different program statements.

• In static analysis, transfer functions define how to evaluate
different program statements on abstract values.

+

+

+ = +

=

=

=

O

/

/

/

/

+

Yue Li @ Nanjing University

+

O

+

+ + = +

+ =

+ =

+ =

O O



Over-approximation: Transfer Functions

• Transfer functions are defined according to “analysis problem”
and the “semantics” of different program statements.

• In static analysis, transfer functions define how to evaluate
different program statements on abstract values.

+

O

+

+ + = +

+ =

+ =

+ =

O O

+

+

+ = +

=

=

=

O

/

/

/

/

+

Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

=/O O

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];
q = arr[a];

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];

Divided
by zero

q = arr[a];

1

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];

Divided
by zero

negative
array indexq = arr[a];

1

2

3

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];

Divided
by zero

negative
array indexq = arr[a];

1

2

3

1 2 Static analysis is useful

p =
q =

……
Yue Li @ Nanjing University



+

+

+ = +

=

=

=

O

/

/

/

/

+

+

O

+

+ + = +

+ =

+ =

+ =

O O

x = 10;
y = -1;
z = 0;
a = x + y;
b = z / y;

=/O O

c = a / b;

x =
y =
z =
a =
b =
c =

+

O

O

p = arr[y];

Divided
by zero

negative
array indexq = arr[a];

1

2

3

1 2 Static analysis is useful

p =
q =

3 But (over-approximated) static
analysis produces false positives

……
Yue Li @ Nanjing University



Over-approximation: Control Flows

if(input)
y = 10;

else
y = -1;

x = 1;

z = x + y;

x = 1;

y = 10; y = -1;

z = x + y;

Yue Li @ Nanjing University



Over-approximation: Control Flows

if(input)
y = 10;

else
y = -1;

x = 1;

z = x + y;

x = 1;

y = 10; y = -1;

z = x + y;

y = + y =

Yue Li @ Nanjing University



Over-approximation: Control Flows

if(input)
y = 10;

else
y = -1;

x = 1;

z = x + y;

x = 1;

y = 10; y = -1;

z = x + y;

y = + y =

y =

Yue Li @ Nanjing University



Over-approximation: Control Flows

if(input)
y = 10;

else
y = -1;

x = 1;

z = x + y;

x = 1;

y = 10; y = -1;

z = x + y;

y = + y =

y =

As it’s impossible to enumerate all paths in practice,
flow merging (as a way of over-approximation) is
taken for granted in most static analyses.

Yue Li @ Nanjing University



Teaching Plan

Yue Li @ Nanjing University

1. Introduction

2. Intermediate Representation

3. Data Flow Analysis – Applications (I)

4. Data Flow Analysis – Applications (II)

5. Data Flow Analysis – Foundations (I)

6. Data Flow Analysis – Foundations (II)

7. Inter-procedural Analysis

8. Pointer Analysis

9. Pointer Analysis – Foundations (I)

10. Pointer Analysis – Foundations (II)

11. Context Sensitivity (I)

12. Context Sensitivity (II)

13. Static Analysis for Security

14. Datalog-Based Static Analysis

15. CFL-Reachability and IFDS

16. Soundness and Soundiness



Evaluation Criteria

Yue Li @ Nanjing University

• Coding Assignments 50%

• Final Exam 50%



Coding Assignments

A1

Intraprocedural

Live Variable Analysis and Iterative Solver

A2 Constant Propagation and Worklist Solver

A3 Dead Code Detection

A4Interprocedural CHA and Interprocedural Constant Propagation 

A5 Context-Insensitive Pointer/Alias Analysis

A6 Context-Sensitive Pointer/Alias Analysis

A7

A8 Taint Analysis

A1 A2 A3
Learn how to incorporate 
different analyses to build 

new analysis

A2 A4 A7
Learn how to improve analysis 

precision by handling 
method calls and aliasing

A5 A6 A7/A8
Learn how the precision of 

fundamental analysis affects 
the precision of its clients

Alias-Aware Interprocedural Constant Propagation



TheX You Need To Understand in This Lecture

• What are the differences between static analysis
and (dynamic) testing?

• Understand soundness, completeness, false negatives,
and false positives.

• Why soundness is usually required by static analysis?

• How to understand abstraction and over-approximation?

Yue Li @ Nanjing University



Yue Li @ Nanjing University

计算机系楼
副楼536室


